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Last Time

• Direct sum

• Orthogonal projections and orthogonal spaces

Warm up

• Recall the corollary from last time: Suppose E is a subspace of a Hilbert space H. Then E
is closed if and only if (E⊥)⊥ = E. The proof for the preceding theorem was quite lengthy,
but a shorter proof of the corollary can be found in Rudin: Since E is closed, the direct
sums

Ē ⊕ Ē⊥ = H

and
Ē⊥ ⊕ (Ē⊥)⊥ = H

are unique. Comparing the two identities, we identify that Ē must be (Ē⊥)⊥.

• Recall the steps to prove completeness of l2 ≡ l2(N):

1. Consider any Cauchy sequence (xn)n∈N in l2. Using norm inequality

|xnj − xmj | ≤ ‖xn − xm‖,

we get that, for each fixed j, (xnj )n∈N forms a Cauchy sequence in C, hence converges
to xnj → xj by completeness.

2. Using that Cauchy sequences are bounded, show (xj)j∈N ∈ l2(N).

3. Show sequence (xn)n∈N actually converges to x with respect to the norm on l2, which
can be shown by using triangle inequality and sup argument.
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Dual Spaces

Consider the space of bounded linear functionals on H.

1.14 Definition. The dual space V ′ of a normed space V is given by all linear maps

Λ : V → C, sup
‖x‖≤1

|Λx| <∞.

We equip V ′ with the norm
‖Λ‖ = sup

‖x‖≤1
|Λx|.

To see that ‖Λ‖ is indeed a norm on H, it is enough to show that it is positive definite, ie.,
we want to show that

‖Λ‖ = 0 ⇐⇒ Λ = 0.

Suppose that ‖Λ‖ = 0, or sup‖x‖≤1 |Λx| = 0, which implies |Λx| ≤ 0 for all x ∈ H, so it must
be true that Λx = 0 for all x. Thus, Λ = 0.

Conversely, let Λ = 0, then sup‖x‖≤1 |Λx| = 0 = ‖Λ‖.

Riesz Representation Theorem

1.15 Theorem. Let H be a complex Hilbert space. Then the map φ : H → H′ given by

(φ(x)) (y) = 〈y, x〉

is a conjugate linear isometric bijection.
In particular, if Λ is a bounded linear functional on H, then there is an x ∈ H so that for

each y ∈ H,
Λy = 〈y, x〉,

and
‖Λ‖ = ‖x‖.

Proof. (This proof may be found in Rudin, Chapter 12, page 308. I typed it here for convenience
and added a few notes for my own understanding).

We first want to show ‖Λ‖ = ‖x‖ for x ∈ H. By CauchySchwarz inequality, we have that

|Λy| := |〈y, x〉| ≤ ‖y‖‖x‖,

which implies ‖Λ‖ ≤ ‖x‖. Conversely, ‖x‖2 = 〈x, x〉 =: |Λx| ≤ ‖Λ‖‖x‖, so ‖x‖ ≤ ‖Λ‖.

Next, we want to show that every Λ ∈ H has the form Λy = 〈y, x〉 for y ∈ H. If Λ = 0,
then we take x = 0. If Λ is non-zero, we let N (Λ) := {y ∈ H : Λy = 0} be the null space of Λ.
Since H = N (Λ)⊕ (N (Λ))⊥, there exists a z ∈ (N (Λ))⊥, z 6= 0, and

(Λy)z − (Λz)y ∈ N (Λ)

for all y ∈ H, which implies
(Λy)〈z, z〉 − (Λz)〈y, z〉 = 0

⇐⇒ Λy =
1

〈z, z〉
Λz〈y, z〉 = 〈y, Λ̄z z

〈z, z〉
〉.

Hence, for any y ∈ H, Λy = 〈y, x〉 with x = ¯(Λz) z
〈z,z〉 ∈ H.
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Summability

In this section, we introduce a more general version of direct sum.
First, let us recall the definition of summability.

1.16 Definition. Let V be a normed space, and (xj)j∈J a family of elements in V , so x : J →
V, j 7→ xj a V -valued function.

Let F be the set of all finite subsets of J . Then (xj)j∈J is called summable if there is a
y ∈ V such that for each ε > 0, there is an Fε ∈ F such that for all F ∈ F with Fε ⊂ F,∑

j∈F

xj ∈ Bε(y) ≡ {x ∈ V : ‖x− y‖ < ε}.

For example, suppose V = R and (xj) are non-negative functions (not necessarily linear),
given by j 7→ xj ∈ R+. If (xj)j∈J are summable, then

sup{
n∑
k=1

(xj)k : {j1, j2, ..., jn} ∈ J} <∞.

1.17 Remark. We note that this definition is, unlike the convergence of series, invariant reordering
J with a bijection since any reordering would create another subset of J that is also finite and in
F .

We use the notion of summability to equip a family of Hilbert spaces with a new inner product.

1.18 Lemma. Let (Hj)j∈J be a family of Hilbert spaces and

H = {(xj)j∈J ∈
∏
j∈J

Hj,
∑
j∈J

‖xj‖2 <∞}.

Then H is a Hilbert space with the inner product

〈(xj)j∈J , (yj)j∈J〉 =
∑
j∈J

〈xj, yj〉.

Proof. We first show that H is subspace of the vector space
∏

j∈J Hj:
It is clear to see that H is closed under scalar multiplication. To see H is closed under

addition, recall the parallelogram law

‖a+ b‖2 ≤ 2‖a‖2 + 2‖b‖2

for a, b ∈ H. So for x = (xj)j∈J , y = (yj)j∈J ∈ H,

‖x+ y‖2 =
∑
j∈J

‖xj + yj‖2 ≤ 2
∑
j∈J

‖xj‖2 + 2
∑
j∈J

‖yj‖2 <∞,

where the last inequality is due to the summability of xj, yj. Thus, H is a subspace of
∏

j∈J Hj.
Next, for x, y ∈ H, the polarization identity, x± y ∈ H, and x± iy ∈ H gives

〈x, y〉 =
∑
j∈J

〈xj, yj〉.
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To show that the above identity is an inner product, it is enough to show its positive defi-
niteness. Let x ∈ H. Suppose 〈x, x〉 = 0, which implies

∑
j∈J〈xj, yj〉 = 0. Since Hj is a Hilbert

space for each j, we have that, if 〈xj, xj〉 = 0, then xj = 0, so x = 0. Conversely, if x = 0, then
xj = 0 for all j ∈ J , and since Hj are Hilbert spaces, 〈xj, xj〉 = 0 or

∑
j∈J〈xj, xj〉 = 0 = 〈x, x〉.

Finally, we need to show completeness (using the steps provided in the warm-up).
Let (xn)n∈N be a Cauchy sequence in H. Then by norm inequality

‖xnj − xkj‖ ≤ ‖xn − xk‖H,

we have that, for fixed j ∈ J , (xnj )n∈N is Cauchy, ie. (xnj )j∈J converges to xnj 7→ xj ∈ Hj.
For each finite subset F ⊂ J :∑

j∈F

‖xj‖2Hj
= lim

k→∞

∑
j∈F

‖xkj‖2Hj
≤ lim

k→∞

∑
j∈J

‖xkj‖2Hj
= lim

k→∞
‖xk‖2 <∞,

with the last inequality using boundedness of Cauchy sequences. Hence, (xj)j∈J ∈ H.
It remains to show that xn → x as n→∞. Let ε > 0 and choose n0 ∈ N with ‖xn−xk‖ < ε

for n, k ≥ n0. Then for each finite F ∈ J∑
j∈F

‖xj − xnj ‖2H = lim
m→∞

∑
j∈F

‖xmj − xnj ‖2H ≤ lim
m→∞

∑
j∈J

‖xmj − xnj ‖2H ≤ ε2,

so xn → x, and H is complete.

The readers may notice that, if H = Rn =
∏

nR, then the inner product in the above
theorem is the same with the usual inner product in Rn.
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