Dual Spaces, Riesz Representation Theorem, and
Summability
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taken by An Vu

Last Time
e Direct sum

e Orthogonal projections and orthogonal spaces

Warm up

e Recall the corollary from last time: Suppose FE is a subspace of a Hilbert space H. Then E
is closed if and only if (E+)1 = E. The proof for the preceding theorem was quite lengthy,
but a shorter proof of the corollary can be found in Rudin: Since E is closed, the direct

sums B B
E®E-=H

and
Eto (EL)L =H

are unique. Comparing the two identities, we identify that £ must be (E+)*.
e Recall the steps to prove completeness of [* = [?(N):
1. Consider any Cauchy sequence (2™),cn in [?. Using norm inequality
|z} — 2| < 2" — 2™,

we get that, for each fixed j, (27),en forms a Cauchy sequence in C, hence converges
to 7 — x; by completeness.
2. Using that Cauchy sequences are bounded, show (z;);en € I*(N).

3. Show sequence (2"),cn actually converges to x with respect to the norm on /2, which
can be shown by using triangle inequality and sup argument.



Dual Spaces

Consider the space of bounded linear functionals on H.
1.14 Definition. The dual space V' of a normed space V' is given by all linear maps

A:V = C, sup |[Az| < 0.

ll=]I<1

We equip V' with the norm
[All = sup |Az].

=<1

To see that ||A]| is indeed a norm on H, it is enough to show that it is positive definite, ie.,
we want to show that
A =0 <= A=0.

Suppose that [[A]| = 0, or sup,<; |[Az| = 0, which implies [Az| < 0 for all x € H, so it must
be true that Az = 0 for all z. Thus, A = 0.
Conversely, let A =0, then sup,<; |[Az| =0 = [|A]]. O

Riesz Representation Theorem

1.15 Theorem. Let H be a complex Hilbert space. Then the map ¢ : H — H' given by
(¢(x)) (y) = (y, )

is a conjugate linear isometric bijection.
In particular, if A is a bounded linear functional on H, then there is an x € H so that for
eachy € H,
Ay = (y,z),
and
A = l=]-

Proof. (This proof may be found in Rudin, Chapter 12, page 308. | typed it here for convenience
and added a few notes for my own understanding).
We first want to show ||A|| = ||z|| for € H. By CauchySchwarz inequality, we have that

Ayl == |y, )] < yllle]l
which implies [[A]] < [|z]. Conversely, [l2]|? = (,2) =: |Az| < [Alllle], so [|z] < [|A]l.

Next, we want to show that every A € H has the form Ay = (y,x) fory € H. If A =0,
then we take x = 0. If A is non-zero, we let N'(A) := {y € H : Ay = 0} be the null space of A.
Since H = N(A) ® (N(A))*, there exists a z € (N(A))4, 2 # 0, and

(Ay)z — (Az)y € N(A)
for all y € H, which implies
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Summability

In this section, we introduce a more general version of direct sum.
First, let us recall the definition of summability.

1.16 Definition. Let V' be a normed space, and (z;),c; a family of elementsin V, so z : J —
V,j — x; a V-valued function.

Let F be the set of all finite subsets of J. Then (z;);c; is called summable if there is a
y € V such that for each € > 0, there is an F, € F such that for all F' € F with F, C F,

S e By ={eeV: |-yl <e.
jeF

For example, suppose V' = R and (z;) are non-negative functions (not necessarily linear),
given by j — z; € RT. If (x;);cs are summable, then

sup{z )k {J1, 2, s n} € J} < 00,

1.17 Remark. We note that this definition is, unlike the convergence of series, invariant reordering
J with a bijection since any reordering would create another subset of J that is also finite and in

F.

We use the notion of summability to equip a family of Hilbert spaces with a new inner product.
1.18 Lemma. Let (H;);cs be a family of Hilbert spaces and
H={(2;)5es € [[ My ) llsll* < o0}
jeJ jeJ

Then H is a Hilbert space with the inner product

((x1)jes, W)ies) = D _(x5,95).

jedJ

Proof. We first show that H is subspace of the vector space H]EJ
It is clear to see that H is closed under scalar multiplication. To see H is closed under
addition, recall the parallelogram law

la +0]1* < 2[lal* + 2||b]*

for a,b € H. So for x = () e,y = (yj)jes € H,

lz+yl® =D Nl +usll* <2 llasll® +2 ) llysl® < oo,

jeJ jeJ jeJ

where the last inequality is due to the summability of z;,y;. Thus, H is a subspace of Hjej H;.
Next, for x,y € H, the polarization identity, xt +y € H, and x £+ iy € H gives

(z,y) = Z(%,yﬁ-

jeJ
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To show that the above identity is an inner product, it is enough to show its positive defi-
niteness. Let x € H. Suppose (z,x) = 0, which implies >, ;(z;,y;) = 0. Since H,; is a Hilbert
space for each j, we have that, if (z;,2;) =0, then z; = 0, so z = 0. Conversely, if z = 0, then
zj = 0forall j € J, and since H; are Hilbert spaces, (z;,z;) = 0or }_._;(z;,2;) = 0= (x, ).

Finally, we need to show completeness (using the steps provided in the warm-up).

Let (2™),en be a Cauchy sequence in H. Then by norm inequality

Il = 25l < fla™ = 2,

we have that, for fixed j € J, (z})nen is Cauchy, ie. (z});es converges to a7 +— x; € H,;.
For each finite subset ' C J:

2 : k|2 : k|12 : k|2
S oy, = Jim S et < fim Sk, = fm 1417 < o,
jeF jeF jedJ

with the last inequality using boundedness of Cauchy sequences. Hence, (z;)jcs € H.
It remains to show that 2" — z as n — oo. Let € > 0 and choose ny € N with [|2" —z*|| < ¢
for n, k > ng. Then for each finite F € J

Sl — gl = dim S [l - 2Bl < lm 3 [l - a3 < &
jeF jeF jeJ

so 2" — x, and H is complete. ]

The readers may notice that, if H = R" = Hn R, then the inner product in the above
theorem is the same with the usual inner product in R".



	Summability

