
Lecture Notes from August 30, 2022
taken by Joseph Walker

Warm Up Exercises

Recall the following:

1.1.14 Definition. For any subset E of a Hilbert Space H, E⊥ := {x ∈ H : ∀y ∈ E, 〈x, y〉 = 0}

1.1.15 Theorem. If F is a closed subspace of a Hilbert Space H, then H = F⊕ F⊥.

1.1.16 Exercise. Suppose we have a closed subspace V . Then V is a closed subspace of a Hilbert
space H, thus

V ⊕ V⊥ = H

However, V
⊥

is also a closed subspace of a Hilbert Space, therefore

V
⊥ ⊕ V⊥

⊥

= H

Comparing direct sums listed above, we have

(V
⊥
)⊥ = V

1.1.17 Exercise. Recall the steps to show l2 ≡ l2(N) is complete.

(1) Consider a Cauchy sequence (xn)n∈N in l2 The inequality |xnj − x
m
j | ≤ ‖xn − xm‖ gives us

that for each j∈ N, (xnj )n∈N forms a Cauchy sequence in C, hence xnj → xj by completeness

(2) By the boundedness of Cauchy sequences, show that (xj)j∈N ∈ l2(N)

(3) Show the sequence (xn) converges to x w.r.t to the norm on l2 using the triangle inequality
and the sup argument.

The Dual

We begin a study of the space of bounded linear functionals on a Hilbert Space.

1.1.18 Definition. The dual V’ of a normed vector space V is given by all linear maps λ : V → C
such that sup‖x‖≤1|λx| <∞. We equip V’ with the norm ‖λ‖ = sup‖x‖≤1|λx|
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1.1.19 Remark. ‖λ‖ is positive definite. if λ is the zero functional, then ‖λ‖ = sup‖x‖≤1|λx| = 0.
In the other direction, if ‖λ‖ = 0 then |λx| = 0 for each x ≤ 1. We can then apply continuous
norm preserving extensions to show |λx| = 0 on the entire Hilbert space, and thus ‖λ‖ is the zero
functional. This shows both directions of the positive definite definition.

1.1.20 Lemma. Let V be a normed vector space. Let λ : V → C be a bounded linear functional
on V . Then λ is continuous w.r.t the norm.

Proof. Let M be an upper bound on λ. For any ε > 0 there exists σ < ε
M

such that

‖x− y‖ < σ =⇒ |λ(x) − λ(y)| = |λ(x− y)| = ‖x− y‖|λ( x− y
‖x− y‖

) < σM <
ε

M
M = ε

1.1.21 Theorem (Riesz Representation Theorem). Let H be a complex Hilbert Space. Then
the map I : H → H ′ defined by (I(x))(y) = 〈y, x〉 is a conjugate linear isometric bijection. In
particular, if λ is a bounded linear functional, then there is a unique x ∈ H such that for each
y ∈ H, λy = 〈y, x〉, and ‖λ‖ = ‖x‖

Proof. Let λ be a bounded linear functional on a Hilbert Space H. If λ is the zero functional,
then we have λ(y) = 〈y, x〉 = 0 for x = ~0 ∈ H. Now assume λ is not the zero functional. Then
there exists x ∈ H such that λ(x) 6= 0, x /∈ kerλ. λ is a bounded linear functional, hence by
the lemma above λ is continuous. Therefore, kerλ = λ−1({0}) is closed by continuity. Thus,
H = kerλ ⊕ kerλ⊥, and kerλ⊥ is also closed. Then by the Projection Theorem there exists a
projection P : H → kerλ⊥. Now define u = P(x) ∈ kerλ⊥. Note that P(x) 6= 0 as x /∈ kerλ.
Then for each y ∈ H we have the following calculation:

〈y, u〉 = 〈y−
λ(y)u

‖u‖
, u〉+ 〈λ(y)u

‖x‖
, u〉

u ∈ kerλ⊥, therefore λ(y)u
‖u‖ ∈ kerλ

⊥. Hence, y− λ(y)u
‖u‖ ∈ kerλ which yields 〈y− λ(y)u

‖u‖ , u〉 = 0.
This zeroes out a term in our above calculation, giving us

〈y, u〉 = 〈λ(y)u
‖u‖

, u〉 = λ(y)

Thus for any y ∈ H, λ(y) = 〈y, x〉. Furthermore,

‖λ‖ = sup‖y‖≤1|λy| = sup‖y‖≤1|〈y, x〉| = |x|

Finally, we prove uniqueness: Suppose there exists x, x ′ ∈ H such that λy = 〈y, x〉 and λy =
〈y, x ′〉 for each y ∈ H. Then we have

0 = λy− λy = 〈y, x〉− 〈y, x ′〉 = 〈y, x− x ′〉

for each y ∈ H. Thus
〈x− x ′, x− x ′〉 = ‖x− x ′‖ = 0

and so x - x’ = 0 by the positive definite property of the norm, which gives x = x’.
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Summability

Recall that an infinite sum in R converges to y ∈ R iff for all ε > 0 there exists N ∈ N such
that for all n ≥ N : |Sn − y| ≤ ε where Sn are the the partial sums. However, what if the index
of the sum was potentially uncountable and R is any normed vector space? This leads us to our
formal definition of summability.

1.1.22 Definition. Let V be a normed space, and let (xj)j∈J be a family of elements in V which
can be represented by a V - valued function x : J → V, j → x. Let F be the collection of all
finite subsets of J. Then (xj)j∈J is called summable if there exists y ∈ V such that for each ε > 0
there exists Fε ∈ F where for all F ∈ F with Fε ⊂ F,

∑
n∈F xj ∈ βε(y) ≡ {x ∈ V : ‖x− y‖ < ε}

1.1.23 Exercise. Show that if (xj)j∈J is given by j → xj ∈ R+ ≡ [0,∞), such that V = R+ and
if (xj)j∈J is summable then sup{

∑n
k=1 xjk : {j1, ...jn} ⊂ J} <∞

Proof. Suppose u := {
∑n

k=1 xjk : {j1, ...jn} ⊂ J} is not bounded above in R+. Then for y ∈
R+, ε > 0 there exists {j1, ...jn} ⊂ J such that

∑n
k=1 xjk − y ≥ ε. However (xj)j∈J is summable,

hence there exists a F := {l1, ..., lm} ⊂ J such that |
∑

j∈F xj − y| < ε for F ⊂ F where F
is any finite subset of J. Consider S := F ∪ {j1, ..., jn}. We have |

∑
j∈S xj − y| < ε by the

above statement. However, |
∑

j∈S xj − y| ≥ |
∑n

k=1 xjk − y| ≥ ε as the absolute value function

is monotone increasing on R+ and
∑

j∈S xj − y ≥
∑n

k=1 xjk − y ≥ ε > 0. This contradicts
summability, and thus u must be bounded above. Now u is bounded above in R+, hence there
exists sup{

∑n
k=1 xjk : {j1, ...jn} ⊂ J} <∞

1.1.24 Theorem. Let (Hj)j∈J be a family of Hilbert Spaces and H = {(xj)j∈J ∈
∏

j∈JHj :∑
j∈J ‖xj‖2 < ∞}. If (‖xj‖2)j∈J forms a summable family in R then H is a Hilbert Space with

inner-product 〈(xj)j∈J, (yi)i∈J〉 =
∑

j∈J〈xj, yj〉

Proof. We first show that H is a subspace of the vector space
∏

j∈JHj. Closure under scalar

multiplication is clear, and for a, b ∈ Hj we have by the parallelogram law ‖a+ b‖2 ≤ 2‖a‖2 +
2‖b‖2. Then for (xj)j∈J ∈ H and (yj)j∈J ∈ H∑

j∈J

‖xj + yj‖2 ≤ 2
∑
j∈J

‖xj‖2 + 2
∑
j∈J

‖yj‖2 <∞
Thus x+ y ∈ H, so H is vector space.

Now it will be verified that 〈x, y〉 =
∑

j∈J〈xj, yj〉 is positive definite, sesquilinear, Hermitian
and thus an inner product.

(sesquilinear) For x1, x2, y ∈ H we have

〈x1 + x2, y〉 =
∑
j∈J

〈x1j + x2j, yj〉 =
∑
j∈J

〈x1j, yj〉+
∑
j∈J

〈x2j, yj〉 = 〈x1, y〉+ 〈x2, y〉

and also for x, y, z ∈ H, a ∈ C

〈x, ay+z〉 =
∑
j∈J

〈xj, ayj+zj〉 =
∑
j∈J

a〈xj, yj〉+〈xj, zj〉 = a
∑
j∈J

〈xj, yj〉+
∑
j∈J

〈xj, zj〉 = a〈x, y〉+〈x, z〉
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This shows that the sum is sesquilinear.

(Hermitian) Suppose x, y ∈ H Then we have

〈x, y〉 =
∑
j∈J

〈xj, yj〉 =
∑
j∈J

〈yj, xj〉 =
∑
j∈J

〈xj, yj〉 = 〈x, y〉

Thus our sum is Hermitian.

(Positive Definite) Suppose x ∈ H. If 〈x, x〉 = 0, then

〈x, x〉 =
∑
j∈J

〈xj, xj〉 =
∑
j∈J

‖xj‖2 = 0

hence for each j ∈ J , ‖xj‖ = 0 and thus xj = 0 by positive definite property of norms. Thus

x = ~0. Also, for each x ∈ H we have

〈x, x〉 =
∑
j∈J

〈xj, xj〉 =
∑
j∈J

‖xj‖2 ≥ 0

Hence, 〈x, y〉 is positive semidefinite and 〈x, x〉 = 0 =⇒ x = ~0. Therefore 〈x, y〉 is positive
definite. 〈x, y〉 =

∑
j∈J〈xj, yj〉 is positive definite, sesquilinear, Hermitian and thus an inner

product, which allows us to use the polarization identity. For x, y ∈ H, we have x+iy, x−iy ∈ H,
thus

〈x, y〉 =
∑
j∈J

〈xj, yj〉 =
1

4
(‖x+ y‖2 − ‖x− y‖2 + i‖x+ iy‖2 − i‖x− iy‖2) ∈ H

Hence the sum
∑

j∈J〈xj, yj〉 exists in H and is a well defined inner product on H. It remains to

prove completeness by borrowing from the proof of completeness of l2. Let (xn)n∈N be Cauchy in
H. Then for all ε > 0 there exists N ∈ N such that for n,m ≥ N, ‖xnj − xmj ‖ ≤ ‖xn− xm‖ < ε
which gives us that for fixed j ∈ J, xnj → xj ∈ Hj by completeness of Hj.

Let x ∈ H such that xj = limn→∞ xnj . Then for each finite subset F ⊂ J,∑
j∈F

‖xj‖Hj

2 = lim
n→∞

∑
j∈F

‖xnj ‖Hj

2 ≤ lim
n→∞

∑
j∈J

‖xnj ‖
2

Hj
= lim

n→∞ ‖xn‖2 <∞
by boundedness of Cauchy sequences, hence (xj)j∈J ∈ H

It remains to show limn→∞(xn) = x.
Let ε > 0, and choose No ∈ N such that for n,m ≥ No we have ‖xn−xm‖ ≤ ε. Then for each
finite F ⊂ J, ∑

j∈F

‖xj − xnj ‖
2

Hj
= lim

m→∞
∑
j∈F

‖xmj − xnj ‖
2

Hj
≤ lim

m→∞ ‖xm − xn‖2H ≤ ε
2

thus we have xn → x ∈ H and so H is a complete inner-product space. This completes the
proof that H is a Hilbert Space.
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