Lecture Notes from August 30, 2022

taken by Joseph Walker

Warm Up Exercises

Recall the following:

1.1.14 Definition. For any subset E of a Hilbert Space H, E+ :={x € H :Vy € E, (x,y) = 0}
1.1.15 Theorem. IfF is a closed subspace of a Hilbert Space H, then H =F @& F*.

1.1.16 Exercise. Suppose we have a closed subspace V. Then V is a closed subspace of a Hilbert
space H, thus

VoV =%
However, VL is also a closed subspace of a Hilbert Space, therefore
_ 1L
VeV =%H
Comparing direct sums listed above, we have

V)=V

1.1.17 Exercise. Recall the steps to show 17 = 12(N) is complete.

(1) Consider a Cauchy sequence (x")nen in 1* The inequality [x}* —x* < [[x™ —x™|| gives us
that for each je N, (x]TL)nGN forms a Cauchy sequence in C, hence X;" — x; by completeness

(2) By the boundedness of Cauchy sequences, show that (x;)jey € 1?(N)

(3) Show the sequence (x™) converges to x w.r.t to the norm on 1% using the triangle inequality
and the sup argument.

The Dual

We begin a study of the space of bounded linear functionals on a Hilbert Space.

1.1.18 Definition. The dual V' of a normed vector space V is given by all linear maps A : V — C
such that supj<i|Ax| < co. We equip V' with the norm [|A]| = supy<1|Ax|



1.1.19 Remark. ||A|| is positive definite. if A is the zero functional, then [|A|| = sup<1lAx| = 0.
In the other direction, if ||A|| = O then [Ax| = 0 for each x < 1. We can then apply continuous
norm preserving extensions to show |[Ax| = 0 on the entire Hilbert space, and thus ||A|| is the zero
functional. This shows both directions of the positive definite definition.

1.1.20 Lemma. Let V be a normed vector space. Let A : V — C be a bounded linear functional
on V. Then A is continuous w.r.t the norm.

Proof. Let M be an upper bound on A. For any € > 0 there exists 0 < §; such that

-y

X—) < oM < iI\/l:e
x =yl

x =yl <o = AKX) =AYl = Alx—y)l =[x —y||A( v

]

1.1.21 Theorem (Riesz Representation Theorem). Let H be a complex Hilbert Space. Then
the map 1 : H — H’ defined by (1(x))(y) = (y,x) is a conjugate linear isometric bijection. In
particular, if A is a bounded linear functional, then there is a unique x € H such that for each
y € H,\y = (y,x), and []A]| = |[x]]

Proof. Let A be a bounded linear functional on a Hilbert Space H. If A is the zero functional,
then we have A(y) = (y,x) =0 for x =0 € H. Now assume A is not the zero functional. Then
there exists x € H such that A(x) # 0,x & kerA. A is a bounded linear functional, hence by
the lemma above A is continuous. Therefore, kerA = A~'({0}) is closed by continuity. Thus,
H = kerA @ kerAt, and kerAt is also closed. Then by the Projection Theorem there exists a
projection P : H — kerAt. Now define u = P(x) € kerAt. Note that P(x) # 0 as x ¢ kerA.
Then for each y € ‘H we have the following calculation:

Alylu Aly)u
(Yw ={y— == + (W
’ [l Ix||
u € kerAt, therefore 2 ” H € kerAt. Hence, y — W € kerA which yields (y — %‘,u} =
This zeroes out a term in our above calculation, giving us
Aly)u
() = () =AW

Thus for any y € H, A(y) = (y,x). Furthermore,

Al = supjy <Ayl = supyy<1l(y, x)| = [x|

Finally, we prove uniqueness: Suppose there exists x,x’ € H such that Ay = (y,x) and Ay =
{(y,x') for each y € H. Then we have

0=2Ay — Ay = (y,x) — (y,x) = (Y, x —x')

for each y € H. Thus
(x =x/,x =x) =[x =x| =0

and so x - x' = 0 by the positive definite property of the norm, which gives x = x'. O
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Summability

Recall that an infinite sum in R converges to y € R iff for all € > 0 there exists N € N such
that for all n > N : [S;, —y| < € where S, are the the partial sums. However, what if the index
of the sum was potentially uncountable and R is any normed vector space? This leads us to our
formal definition of summability.

1.1.22 Definition. Let V be a normed space, and let (x;);c; be a family of elements in V which
can be represented by a V - valued function x : | — V[j — x. Let F be the collection of all
finite subsets of J. Then (x;)jc; is called summable if there exists y € V such that for each € > 0
there exists Fe € F where forall F€ Fwith F. CF, 3 | x5 € Be(y) ={x € V:|[x—y| <¢€}

1.1.23 Exercise. Show that if (x;)jej is given by j — x; € R* = [0, 00), such that V = R™ and
if (xj)jej is summable then sup{} ;" ;xj, : {j1,...jn} C J} < 00

Proof. Suppose w := {3} _; %, : {j1,.--jn} C J} is not bounded above in R*. Then for y €
R*, e > 0 there exists {ji,...jn} C J such that Y |_;xj, —y > €. However (x;)je is summable,
hence there exists a F := {l;,...,lin} C ] such that !Zjeij —y| < € for F C F where F
is any finite subset of J. Consider S := F U {j1,...,jn}. We have [} ;.¢x; —yl < € by the
above statement. However, | 3", s % —yl > |3}, xj, — Y| > € as the absolute value function
is monotone increasing on R* and Z].Es X —Y > Yo 1%, —Y > € >0. This contradicts

summability, and thus u must be bounded above. Now u is bounded above in R, hence there
exists sup{d_;_;Xj, : {j1,--jn} C J} < 00 O

1.1.24 Theorem. Let (H; );e] be a family of Hilbert Spaces and H = {(xj)je; € H;e]
> e %11 < oo} I ([Ix]1*)iey forms a summable family in R then H is a Hilbert Space Wlth
inner-product {(x;)jey, (Yi)ie)) = 2_j¢;(X), Yj)

Proof. We first show that # is a subspace of the vector space [[._;H;. Closure under scalar

j€]
multiplication is clear, and for a,b € 7; we have by the parallelogram law |la + b||* < 2||a||* +
2||bJ|%. Then for (xj)ic) € H and (y;)ie; € H

2 2 2
Dk +ylF<2) Ikl +2) lhyll® < oo
j€J j€] j€J

Thus x +y € H, so H is vector space.

Now it will be verified that (x,y) = 3 ;;(x;,y;) is positive definite, sesquilinear, Hermitian
and thus an inner product.

(sesquilinear) For x1,%2,y € H we have
(x1+x2,y) = Z(Xn + %25, Yj) = Z<X1j>yj> + Z(XZ)')UJ'> = (x1,y) + (x2,Y)
i€] i€] j€J
and also for x,y,z€e H, a € C

(x,ay+z) = Z Xj, ay;+z;) Z a(xj, yj)+(x, ) = aZ Xjy Yj +Z Xy Zj X, y)+H(x,

j€e] j€J j€] j€]



This shows that the sum is sesquilinear.

(Hermitian) Suppose x,y € H Then we have
(x,y) = Z<ijyi> = Z (Yj, %) = Z<Xj>yj> = (%,Y)
j€] i€] j€]

Thus our sum is Hermitian.

(Positive Definite) Suppose x € H. If (x,x) =0, then
(x,x) = Z Xj, X)) Z HXJH
j€] j€]

hence for each j € ], ||xj|| = 0 and thus x; = O by positive definite property of norms. Thus
x = 0. Also, for each x € H we have

(x,x) = Z Xj, Xj) Z ||X]|| >0
€] j€]
Hence, (x,y) is positive semidefinite and (x,x) = 0 = x = 0. Therefore (x,y) is positive
definite. (x,y) = > ;.;(xj,y;) is positive definite, sesquilinear, Hermitian and thus an inner
product, which allows us to use the polarization identity. For x,y € H, we have x+iy,x—iy € H,
thus

1 . . . .
0oy) =06,y = gk +ylP = Ix =yl + illx + y|* — ix —ty[?) € H
i€]
Hence the sum 3, (x;, ;) exists in H and is a well defined inner product on . It remains to

prove completeness by borrowing from the proof of completeness of 12. Let (x™)nen be Cauchy in
H. Then for all € > 0 there exists N € N such that for n,m > N, [[x}' —x"|| < [[x" —x™|| <€
which gives us that for fixed j € ], x;* — x; € H; by completeness of H;.

Let x € H such that xj; = lim,_, x . Then for each finite subset F C J,
A, 2 = i n i 2= n2
> Il = lim 3 I, 2 < lim 3 g, = lim X < oo
jeF jeF jeJ

by boundedness of Cauchy sequences, hence (x;);c; € H

It remains to show lim, . (x") = x.
Let € > 0, and choose N, € N such that for n,m > N, we have ||[x" —x™|| < e. Then for each
finite F C J,

=2, = lim Y X=X i m_ ot
S xR, = T 32 < T = < €
jeF jeF
thus we have x™ — x € H and so H is a complete inner-product space. This completes the

proof that  is a Hilbert Space.
O
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