Lecture Notes from August 30, 2022

taken by Joseph Walker

Warm Up Exercises

Recall the following:

1.1.14 Definition. For any subset E of a Hilbert Space \mathcal{H} , $E^{\perp} := \{x \in \mathcal{H} : \forall y \in E, \langle x, y \rangle = 0\}$

1.1.15 Theorem. If F is a closed subspace of a Hilbert Space \mathcal{H} , then $\mathcal{H} = F \oplus F^{\perp}$.

1.1.16 Exercise. Suppose we have a closed subspace \overline{V} . Then \overline{V} is a closed subspace of a Hilbert space \mathcal{H} , thus

$$\overline{\mathrm{V}}\oplus\overline{\mathrm{V}}^{\perp}=\mathcal{H}$$

However, \overline{V}^{\perp} is also a closed subspace of a Hilbert Space, therefore

$$\overline{\operatorname{V}}^{\perp} \oplus \overline{\operatorname{V}}^{\perp^{\perp}} = \mathcal{H}$$

Comparing direct sums listed above, we have

$$(\overline{V}^{\perp})^{\perp} = \overline{V}$$

1.1.17 *Exercise.* Recall the steps to show $l^2 \equiv l^2(\mathbb{N})$ is complete.

- (1) Consider a Cauchy sequence $(x^n)_{n\in\mathbb{N}}$ in l^2 The inequality $|x_j^n x_j^m| \le ||x^n x^m||$ gives us that for each $j\in\mathbb{N}$, $(x_j^n)_{n\in\mathbb{N}}$ forms a Cauchy sequence in \mathbb{C} , hence $x_j^n \to x_j$ by completeness
- (2) By the boundedness of Cauchy sequences, show that $(x_i)_{i \in \mathbb{N}} \in l^2(\mathbb{N})$
- (3) Show the sequence (x^n) converges to x w.r.t to the norm on l^2 using the triangle inequality and the sup argument.

The Dual

We begin a study of the space of bounded linear functionals on a Hilbert Space.

1.1.18 Definition. The *dual* V' of a normed vector space V is given by all linear maps $\lambda : V \to \mathbb{C}$ such that $\sup_{\|x\| \le 1} |\lambda x| < \infty$. We equip V' with the norm $\|\lambda\| = \sup_{\|x\| \le 1} |\lambda x|$

1.1.19 Remark. $\|\lambda\|$ is positive definite. if λ is the zero functional, then $\|\lambda\| = \sup_{\|x\| \le 1} |\lambda x| = 0$. In the other direction, if $\|\lambda\| = 0$ then $|\lambda x| = 0$ for each $x \le 1$. We can then apply continuous norm preserving extensions to show $|\lambda x| = 0$ on the entire Hilbert space, and thus $\|\lambda\|$ is the zero functional. This shows both directions of the positive definite definition.

1.1.20 Lemma. Let V be a normed vector space. Let $\lambda : V \to \mathbb{C}$ be a bounded linear functional on V. Then λ is continuous w.r.t the norm.

Proof. Let M be an upper bound on λ . For any $\varepsilon > 0$ there exists $\sigma < \frac{\varepsilon}{M}$ such that

$$\|\mathbf{x} - \mathbf{y}\| < \sigma \implies |\lambda(\mathbf{x}) - \lambda(\mathbf{y})| = |\lambda(\mathbf{x} - \mathbf{y})| = \|\mathbf{x} - \mathbf{y}\| |\lambda(\frac{\mathbf{x} - \mathbf{y}}{\|\mathbf{x} - \mathbf{y}\|}) < \sigma \mathbf{M} < \frac{\varepsilon}{\mathbf{M}} \mathbf{M} = \varepsilon$$

1.1.21 Theorem (Riesz Representation Theorem). Let \mathcal{H} be a complex Hilbert Space. Then the map $I : \mathcal{H} \to \mathcal{H}'$ defined by $(I(x))(y) = \langle y, x \rangle$ is a conjugate linear isometric bijection. In particular, if λ is a bounded linear functional, then there is a unique $x \in \mathcal{H}$ such that for each $y \in \mathcal{H}, \lambda y = \langle y, x \rangle$, and $\|\lambda\| = \|x\|$

Proof. Let λ be a bounded linear functional on a Hilbert Space \mathcal{H} . If λ is the zero functional, then we have $\lambda(y) = \langle y, x \rangle = 0$ for $x = \vec{0} \in \mathcal{H}$. Now assume λ is not the zero functional. Then there exists $x \in \mathcal{H}$ such that $\lambda(x) \neq 0, x \notin \ker\lambda$. λ is a bounded linear functional, hence by the lemma above λ is continuous. Therefore, $\ker\lambda = \lambda^{-1}(\{0\})$ is closed by continuity. Thus, $\mathcal{H} = \ker\lambda \oplus \ker\lambda^{\perp}$, and $\ker\lambda^{\perp}$ is also closed. Then by the Projection Theorem there exists a projection $P : \mathcal{H} \to \ker\lambda^{\perp}$. Now define $\mathfrak{u} = P(x) \in \ker\lambda^{\perp}$. Note that $P(x) \neq 0$ as $x \notin \ker\lambda$. Then for each $y \in \mathcal{H}$ we have the following calculation:

$$\langle \mathbf{y}, \mathbf{u} \rangle = \langle \mathbf{y} - \frac{\lambda(\mathbf{y})\mathbf{u}}{\|\mathbf{u}\|}, \mathbf{u} \rangle + \langle \frac{\lambda(\mathbf{y})\mathbf{u}}{\|\mathbf{x}\|}, \mathbf{u} \rangle$$

 $\mathfrak{u} \in ker\lambda^{\perp}$, therefore $\frac{\lambda(y)\mathfrak{u}}{\|\mathfrak{u}\|} \in ker\lambda^{\perp}$. Hence, $y - \frac{\lambda(y)\mathfrak{u}}{\|\mathfrak{u}\|} \in ker\lambda$ which yields $\langle y - \frac{\lambda(y)\mathfrak{u}}{\|\mathfrak{u}\|}, \mathfrak{u} \rangle = 0$. This zeroes out a term in our above calculation, giving us

$$\langle \mathbf{y}, \mathbf{u} \rangle = \langle \frac{\lambda(\mathbf{y})\mathbf{u}}{\|\mathbf{u}\|}, \mathbf{u} \rangle = \lambda(\mathbf{y})$$

Thus for any $y \in H$, $\lambda(y) = \langle y, x \rangle$. Furthermore,

$$\|\lambda\| = \sup_{\|y\| \le 1} |\lambda y| = \sup_{\|y\| \le 1} |\langle y, x \rangle| = |x|$$

Finally, we prove uniqueness: Suppose there exists $x, x' \in \mathcal{H}$ such that $\lambda y = \langle y, x \rangle$ and $\lambda y = \langle y, x' \rangle$ for each $y \in \mathcal{H}$. Then we have

$$0 = \lambda y - \lambda y = \langle y, x \rangle - \langle y, x' \rangle = \langle y, x - x' \rangle$$

for each $y \in \mathcal{H}$. Thus

$$\langle \mathbf{x} - \mathbf{x}', \mathbf{x} - \mathbf{x}' \rangle = \|\mathbf{x} - \mathbf{x}'\| = \mathbf{0}$$

and so x - x' = 0 by the positive definite property of the norm, which gives x = x'.

Summability

Recall that an infinite sum in \mathbb{R} converges to $y \in \mathbb{R}$ iff for all $\varepsilon > 0$ there exists $N \in \mathbb{N}$ such that for all $n \ge N$: $|S_n - y| \le \varepsilon$ where S_n are the the partial sums. However, what if the index of the sum was potentially uncountable and \mathbb{R} is any normed vector space? This leads us to our formal definition of summability.

1.1.22 Definition. Let V be a normed space, and let $(x_j)_{j\in J}$ be a family of elements in V which can be represented by a V - valued function $x : J \to V, j \to x$. Let \mathcal{F} be the collection of all finite subsets of J. Then $(x_j)_{j\in J}$ is called *summable* if there exists $y \in V$ such that for each $\varepsilon > 0$ there exists $F_{\varepsilon} \in \mathcal{F}$ where for all $F \in \mathcal{F}$ with $F_{\varepsilon} \subset F$, $\sum_{n \in F} x_j \in \beta_{\varepsilon}(y) \equiv \{x \in V : ||x - y|| < \varepsilon\}$

1.1.23 Exercise. Show that if $(x_j)_{j\in J}$ is given by $j\to x_j\in \mathbb{R}^+\equiv [0,\infty)$, such that $V=\mathbb{R}^+$ and if $(x_j)_{j\in J}$ is summable then $sup\{\sum_{k=1}^n x_{j_k}: \{j_1,...j_n\}\subset J\}<\infty$

 $\begin{array}{l} \textit{Proof. Suppose } u := \{\sum_{k=1}^n x_{j_k} : \{j_1, ... j_n\} \subset J\} \text{ is not bounded above in } \mathbb{R}^+. \text{ Then for } y \in \mathbb{R}^+, \varepsilon > 0 \text{ there exists } \{j_1, ... j_n\} \subset J \text{ such that } \sum_{k=1}^n x_{j_k} - y \geq \varepsilon. \text{ However } (x_j)_{j \in J} \text{ is summable,} \text{ hence there exists a } F := \{l_1, ..., l_m\} \subset J \text{ such that } |\sum_{j \in \mathcal{F}} x_j - y| < \varepsilon \text{ for } F \subset \mathcal{F} \text{ where } \mathcal{F} \text{ is any finite subset of } J. \text{ Consider } S := F \cup \{j_1, ..., j_n\}. \text{ We have } |\sum_{j \in S} x_j - y| < \varepsilon \text{ by the above statement. However, } |\sum_{j \in S} x_j - y| \geq |\sum_{k=1}^n x_{j_k} - y| \geq \varepsilon \text{ as the absolute value function is monotone increasing on } \mathbb{R}^+ \text{ and } \sum_{j \in S} x_j - y \geq \sum_{k=1}^n x_{j_k} - y \geq \varepsilon > 0. \text{ This contradicts summability, and thus } u \text{ must be bounded above. Now } u \text{ is bounded above in } \mathbb{R}^+, \text{ hence there exists } \sup\{\sum_{k=1}^n x_{j_k} : \{j_1, ..., j_n\} \subset J\} < \infty \qquad \square \end{array}$

1.1.24 Theorem. Let $(\mathcal{H}_j)_{j\in J}$ be a family of Hilbert Spaces and $\mathcal{H} = \{(x_j)_{j\in J} \in \prod_{j\in J} H_j : \sum_{j\in J} \|x_j\|^2 < \infty\}$. If $(\|x_j\|^2)_{j\in J}$ forms a summable family in \mathbb{R} then \mathcal{H} is a Hilbert Space with inner-product $\langle (x_j)_{j\in J}, (y_i)_{i\in J} \rangle = \sum_{j\in J} \langle x_j, y_j \rangle$

Proof. We first show that \mathcal{H} is a subspace of the vector space $\prod_{j\in J} \mathcal{H}_j$. Closure under scalar multiplication is clear, and for $a, b \in \mathcal{H}_j$ we have by the parallelogram law $||a + b||^2 \le 2||a||^2 + 2||b||^2$. Then for $(x_j)_{j\in J} \in \mathcal{H}$ and $(y_j)_{j\in J} \in \mathcal{H}$

$$\sum_{j \in J} \|x_j + y_j\|^2 \le 2 \sum_{j \in J} \|x_j\|^2 + 2 \sum_{j \in J} \|y_j\|^2 < \infty$$

Thus $x + y \in \mathcal{H}$, so \mathcal{H} is vector space.

Now it will be verified that $\langle x,y\rangle=\sum_{j\in J}\langle x_j,y_j\rangle$ is positive definite, sesquilinear, Hermitian and thus an inner product.

(sesquilinear) For $x_1, x_2, y \in \mathcal{H}$ we have

$$\langle x_1 + x_2, y \rangle = \sum_{j \in J} \langle x_{1j} + x_{2j}, y_j \rangle = \sum_{j \in J} \langle x_{1j}, y_j \rangle + \sum_{j \in J} \langle x_{2j}, y_j \rangle = \langle x_1, y \rangle + \langle x_2, y \rangle$$

and also for $x,y,z\in H$, $a\in \mathbb{C}$

$$\langle \mathbf{x}, \mathbf{a}\mathbf{y} + \mathbf{z} \rangle = \sum_{\mathbf{j} \in \mathbf{J}} \langle \mathbf{x}_{\mathbf{j}}, \mathbf{a}\mathbf{y}_{\mathbf{j}} + \mathbf{z}_{\mathbf{j}} \rangle = \sum_{\mathbf{j} \in \mathbf{J}} \overline{\mathbf{a}} \langle \mathbf{x}_{\mathbf{j}}, \mathbf{y}_{\mathbf{j}} \rangle + \langle \mathbf{x}_{\mathbf{j}}, \mathbf{z}_{\mathbf{j}} \rangle = \overline{\mathbf{a}} \sum_{\mathbf{j} \in \mathbf{J}} \langle \mathbf{x}_{\mathbf{j}}, \mathbf{y}_{\mathbf{j}} \rangle + \sum_{\mathbf{j} \in \mathbf{J}} \langle \mathbf{x}_{\mathbf{j}}, \mathbf{z}_{\mathbf{j}} \rangle = \overline{\mathbf{a}} \langle \mathbf{x}, \mathbf{y} \rangle + \langle \mathbf{x}, \mathbf{z} \rangle$$

This shows that the sum is sesquilinear.

(Hermitian) Suppose $x, y \in \mathcal{H}$ Then we have

$$\langle \mathbf{x}, \mathbf{y} \rangle = \sum_{j \in J} \langle \mathbf{x}_j, \mathbf{y}_j \rangle = \sum_{j \in J} \overline{\langle \mathbf{y}_j, \mathbf{x}_j \rangle} = \sum_{j \in J} \langle \mathbf{x}_j, \mathbf{y}_j \rangle = \overline{\langle \mathbf{x}, \mathbf{y} \rangle}$$

Thus our sum is Hermitian.

(Positive Definite) Suppose $x \in \mathcal{H}$. If $\langle x, x \rangle = 0$, then

$$\langle \mathbf{x}, \mathbf{x} \rangle = \sum_{j \in J} \langle \mathbf{x}_j, \mathbf{x}_j \rangle = \sum_{j \in J} \|\mathbf{x}_j\|^2 = \mathbf{0}$$

hence for each $j \in J$, $||x_j|| = 0$ and thus $x_j = 0$ by positive definite property of norms. Thus $x = \vec{0}$. Also, for each $x \in H$ we have

$$\langle x,x\rangle = \sum_{j\in J} \langle x_j,x_j\rangle = \sum_{j\in J} \|x_j\|^2 \ge 0$$

Hence, $\langle x, y \rangle$ is positive semidefinite and $\langle x, x \rangle = 0 \implies x = \vec{0}$. Therefore $\langle x, y \rangle$ is positive definite. $\langle x, y \rangle = \sum_{j \in J} \langle x_j, y_j \rangle$ is positive definite, sesquilinear, Hermitian and thus an inner product, which allows us to use the polarization identity. For $x, y \in \mathcal{H}$, we have $x+iy, x-iy \in \mathcal{H}$, thus

$$\langle x, y \rangle = \sum_{j \in J} \langle x_j, y_j \rangle = \frac{1}{4} (\|x + y\|^2 - \|x - y\|^2 + i\|x + iy\|^2 - i\|x - iy\|^2) \in \mathcal{H}$$

Hence the sum $\sum_{j\in J} \langle x_j, y_j \rangle$ exists in \mathcal{H} and is a well defined inner product on \mathcal{H} . It remains to prove completeness by borrowing from the proof of completeness of l^2 . Let $(x^n)_{n\in\mathbb{N}}$ be Cauchy in \mathcal{H} . Then for all $\varepsilon > 0$ there exists $N \in \mathbb{N}$ such that for $n, m \ge N$, $||x_j^n - x_j^m|| \le ||x^n - x^m|| < \varepsilon$ which gives us that for fixed $j \in J$, $x_j^n \to x_j \in \mathcal{H}_j$ by completeness of \mathcal{H}_j .

Let $x \in \mathcal{H}$ such that $x_j = \lim_{n \to \infty} x_j^n$. Then for each finite subset $F \subset J$,

$$\sum_{j \in F} \left\| x_j \right\|_{\mathcal{H}_j}^2 = \lim_{n \to \infty} \sum_{j \in F} \left\| x_j^n \right\|_{\mathcal{H}_j}^2 \le \lim_{n \to \infty} \sum_{j \in J} \left\| x_j^n \right\|_{\mathcal{H}_j}^2 = \lim_{n \to \infty} \left\| x^n \right\|^2 < \infty$$

by boundedness of Cauchy sequences, hence $(x_j)_{j \in J} \in \mathcal{H}$

It remains to show $\lim_{n\to\infty}(x^n) = x$.

Let $\varepsilon>0$, and choose $N_o\in\mathbb{N}$ such that for $n,m\geq N_o$ we have $\|x^n-x^m\|\leq\varepsilon.$ Then for each finite $F\subset J$,

$$\sum_{j\in F} \|x_j - x_j^n\|_{\mathcal{H}_j}^2 = \lim_{m\to\infty} \sum_{j\in F} \|x_j^m - x_j^n\|_{\mathcal{H}_j}^2 \leq \lim_{m\to\infty} \|x^m - x^n\|_{\mathcal{H}}^2 \leq \varepsilon^2$$

thus we have $x^n \to x \in \mathcal{H}$ and so \mathcal{H} is a complete inner-product space. This completes the proof that \mathcal{H} is a Hilbert Space.