
Lecture Notes from September 1, 2022
taken by Lukasz Krzywon

Last time

• Dual Spaces

• Riesz Representation Theorem

• Summability

Warm up:

1.25 Question. Why does x ∈ l2([0, 1]) have at most countably many non-zero elements?

Consider a positive sequence of real numbers converging to zero monotonically. E.g. {1/n}.
Let Jn = {j ∈ [0, 1] : |xj|

2 > 1/n}. Then,⋃
n∈N

Jn = {j ∈ [0, 1] : |xj|
2 > 0}.

By the definition of || · || in l2([0, 1]), for any n ∈ N,

||x||2 ≥ sup
F⊂Jn
F finite

∑
j∈F

|x|2

≥ sup
F⊂Jn
F finite

∑
j∈F

1

n

= sup
F⊂Jn
F finite

|F|

n
=

|Jn|
n
.

Because x ∈ l2([0, 1]), ||x||2 < ∞, so Jn must be finite. Since each Jn is finite, ∪n∈NJn is
countable. Hence, there are at most countably many non-zero elements of x.

1.26 Definition. For a family of Hilbert Spaces (H)j∈J we define

H =
⊕̂
j∈J

= {(xj)j∈J ∈
∏
j∈J

Hj :
∑
j∈J

||xj||
2
Hj
<∞}}

to be the direct sum of the Hilbert spaces (Hj)j∈J
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1.27 Remark. The sum
∑

j∈J Hj of Hj’s is given by finite linear combinations of

Hj ∼= {(xk)k∈J : for each k 6= j, xk = 0} ⊂ H.

This is not the same as H, but
∑

j∈J Hj is a direct sum and it is dense in H. We observe that

the summability of (||xj||
2)j∈J implies that only countably many xj are non-zero.

Proof. Let x ∈ Hk and y ∈ Hl for k 6= l. Then, by Lemma 1.18,

〈x, y〉H =
∑
j

〈xj, yj〉Hj
= 〈xk, 0〉Hk

+ 〈0, yl〉Hl
= 0

Thus, Hk ⊥ Hl, so
∑
Hj is a direct sum. (Addition and scalar multiplication of elements may

be evaluated componentwise.)
Let φj : Hj → ∑Hj ⊂ H be the inclusion map and suppose x ∈ H. Then, x = (xj)

and
∑

j∈J ||xj||
2
Hj
< ∞. By the warm-up, only countably many xj are nonzero. WLOG order

them so x = (xi)i∈N, where we simply are ignoring the entries where xj = 0. We will show
x =
∑∞

i=1φi(xi). For a finite number of terms,

||x−

n∑
i=1

φ(xi)||
2 = 〈x−

n∑
i=1

φ(xi), x−

n∑
i=1

φ(xi)〉

=
∑
j∈J

〈(x−
n∑
i=1

φ(xi))j, (x−

n∑
i=1

φ(xi))j〉Hj
by Lemma 1.18

=

∞∑
i=n+1

〈xi, xi〉Hi
Recall xj = 0 for all but countable j.

Thus, limn→∞ ||x−
∑n

i=1φ(xi)||
2 =
∑∞

i=n+1〈xi, xi〉Hi
= 0. Therefore,

∑
Hj = H.

1.28 Corollary. Let J be a set and CJ contain each function x : J → C, j→ xj. Then,

l2(J ) = {x ∈ CJ :
∑
j∈J

|xj|
2 <∞}

is a Hilbert space with inner product 〈x, y〉 =
∑

j∈J xjyj and norm ||x|| = (
∑

j∈J |xj|
2)1/2.

This is a special case of Lemma 1.18 from August 30.

1.29 Theorem. Let J , CJ be as defined above. Then,

l1(J ) = {x ∈ CJ :
∑
j∈J

|xj| <∞}

is a Banach space with norm ||x||1 =
∑

j∈J |xj|.

Proof. Follows the same strategy as the proof for the Hilbert space case.

1.30 Remark. If J = {1, ..., n} then l2(J ) ∼= CJ and if J = N then l2(J ) ∼= l2.
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Towards orthonormalbasis.

1.31 Definition. A family (xj)j∈J in an inner product spaceH is an orthogonal family if ∀j, i ∈ J
i 6= j =⇒ xj ⊥ xi. Furthermore, if ||xj|| = 1 ∀j ∈ J then it is an orthonormal family.

1.32 Lemma. An orthogonal family, (xj)j∈J , in an inner product space H is summable if and
only if (||xj||

2)j∈J is summable in R. In this case, ||
∑

j∈J xj||
2 =
∑

j∈J ||xj||
2 and {j : xj 6= 0} is

countable.

Recall the definition of summability of (xj): ∃x ∈ H such that ∀ε > 0 ∃Fε finite subset of J
such that if Fε ⊂ F,

∑
F xj ∈ Bε(x).

Proof. Suppose F ⊂ J is finite. Then, the orthogonality of (xj) implies ||
∑

F xj||
2 =
∑

F ||xj||
2 by

repeated application of Pythagoras.
( =⇒ ) Suppose (xj) is summable and F ⊂ J is finite. Then, for ε = 1, ||

∑
F xj − x|| < 1.

Hence, ||
∑

F xj|| < ||x||+ 1 =⇒ ∑
F ||xj||

2 = ||
∑

F xj||
2 < (||x||+ 1)2.

Therefore, supF
∑

F ||xj||
2 ≤ (||x||+ 1)2 <∞, so (||xj||

2)j∈J is summable.

(⇐= ) Suppose (||xj||
2)j∈J is summable. Then, by the warm up, only countably many xj are

nonzero and can be ordered (xi)i∈N. Let x =
∑∞

i=1 xi and Sn =
∑n

i=1 xi. Thus, for m < n ∈ N,
||Sn − Sm||

2 = ||
∑n

i=m+1 xi||
2 =
∑n

i=m+1 ||xi||
2 by orthogonality. By summability, (Sn) is Cauchy

and hence converges in H to x. To satisfy the definition of summability, for all ε > 0, there
exists N ∈ N such that ||x− SN|| < ε. Therefore, we can choose Fε = (xi)i≤N.

The summability properties give consequences for orthonormal families.

1.33 Theorem. Let (xj)j∈J be an orthonormal family in a Hilbert space H. Then

1. for each x ∈ H (i.e. we fix an x),
∑

j∈J |〈x, xj〉|2 ≤ ||x||2 (Bessel’s Inequality)

2. for each x ∈ H, x =
∑

j∈J 〈x, xj〉xj iff
∑

j∈J |〈x, xj〉|2 = ||x||2 (Parseval’s Identity).

Proof. 1) Let x ∈ H. Let F ⊂ J be a finite set and let V = span({(xj) : j ∈ F}) and P
be the orthogonal projection onto V . Then, by Theorem 1.12 ||Px||2 ≤ ||x||2. Since Px ∈ V ,
Px =

∑
F〈Px, xj〉xj =

∑
F〈x, xj〉xj (by 1.12 again). Thus, ||

∑
F〈x, xj〉xj||2 = ||Px||2 ≤ ||x||2. Since

this inequality is true for all finite F, supF
∑

F |〈x, xj〉|2 ≤ ||x||2. Therefore, by the definition of
summable,

∑
J |〈x, xj〉|2 ≤ ||x||2.

2) Let x ∈ H. Then, by (i), (|〈x, xj〉|2j ) is summable and hence has only countably many
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nonzero terms. Reorder with (xi)i∈N. Thus, using the orthonormality of (xi),

0 ≤ ||x−

n∑
i=1

〈x, xi〉xi||2 = 〈x−
n∑
i=1

〈x, xi〉xi, x−
n∑
i=1

〈x, xi〉xi〉

= 〈x, x〉− 〈x−
n∑
i=1

〈x, xi〉xi, x〉− 〈x, x−
n∑
i=1

〈x, xi〉xi〉+ 〈
n∑
i=1

〈x, xi〉xi,
n∑
i=1

〈x, xi〉xi〉

= 〈x, x〉− 2Re(〈x, x−
n∑
i=1

〈x, xi〉xi〉) +
n∑
i=1

〈x, xi〉〈x, xi〉〈xi, xi〉

= ||x||2 − 2Re(

n∑
i=1

〈x, x〉〈x, xi〉+
n∑
i=1

|〈x, xi〉|2

= ||x||2 −

n∑
i=1

|〈x, xi〉|2

Hence,

||x−

n∑
i=1

〈x, xi〉xi||2 = ||x||2 −

n∑
i=1

|〈x, xi〉|2.

Both sides of the equality are sequences of real numbers so LHS converges to zero if and only if
the RHS converges to zero. The LHS converging to zero is equivalent to

∑∞
i=1〈x, xi〉xi = x =⇒

x =
∑

j∈J 〈x, xj〉xj since the (〈x, xi〉)’s were the only nonzero elements.

1.34 Definition. A subset B of a Hilbert space H is called total if span(B) = H. A family,
(xj)j∈J , is called an orthonormalbasis (ONB) if ∪j∈J {xj} is total and (xj)j∈J is orthonormal.

1.35 Theorem. If (xj)j∈J is an orthonormal family in a Hilbert space H, then the following are
equivalent:

1. (xj)j∈J is an ONB

2. (xj)j∈J is a maximal orthonormal family

3. If 〈x, xj〉 = 0 ∀j ∈ J then x = 0

4. ∀x ∈ H, x =
∑

j∈J 〈x, xj〉xj

5. ∀x, y ∈ H, 〈x, y〉 =
∑

j∈J 〈x, xj〉〈xj, y〉 =
∑

j∈J 〈x, xj〉〈y, xj〉.

6. ∀x ∈ H,
∑

j∈J |〈x, xj〉|2 = ||x||2.

Proof. (4 ⇐⇒ 6) Immediate by the previous theorem.
(1 =⇒ 2) Suppose by contrapositive that (xj) is not a maximal orthonormal family. Then,

∃z ∈ H such that ||z|| = 1 and z ⊥ xj for all j ∈ J . Thus, since H = span(xj)
⊕

span(xj)
⊥

,

and span(xj)
⊥

is nonempty, span(xj) 6= H so (xj) is not an ONB.
(2 =⇒ 3) Suppose by way of contradiction that x ∈ H, 〈x, xj〉 = 0 for all j ∈ J and x 6= 0.
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Then, x/||x|| has norm 1 and is also perpendicular to all xj where j ∈ J . This contradicts the
maximality of (xj).
(1 =⇒ 4) We can use (3). By the previous theorem

∑
J |〈x, xj〉|2 ≤ ||x||2 and is thus summable,

so at most a countable number of terms are nonzero. Since the order of the sum does not
matter, WLOG we may write

∑∞
i=1 |〈x, xji〉|2 ≤ ||x||2. Let Sn =

∑n
i=1〈x, xji〉xji . Then, for m < n

||Sn − Sm||
2 = ||

∑n
m+1〈x, xji〉xji ||2 =

∑n
m+1 |〈x, xji〉|2. Since the sum converges, this is a Cauchy

sequence. Thus, ∃z ∈ H such that z =
∑∞

i=1〈x, xji〉xji . Claim: z− x ⊥ xj for all j ∈ J. For the
j ′s already discarded, x ⊥ xj and since those xj’s do not appear in the sum, so z ⊥ xj. Also, for
k ∈ N,

〈z− x, xjk〉 = 〈
∞∑
i=1

〈x, xji〉xji − x, xjk〉 = 〈x, xjk〉〈xjk , xjk〉− 〈x, xjk〉 = 0.

Thus, by 3, z− x = 0 so x = z =
∑∞

i=1〈x, xji〉xji =
∑

j∈J 〈x, xj〉xj.

So far we have proved 1 implies 2,3, and 4.

(4 =⇒ 3) If we assume 4 and 〈x, xj〉 = 0 ∀j ∈ J then x =
∑
J 0 = 0.

(3 =⇒ 2) If we assume 3 then there can be no other norm 1 element to add to (xj) that would
be orthogonal to all currently given xj elements. Hence (xj) is a maximal orthonormal family.

(2 =⇒ 1) By contrapositive suppose (xj) is not an ONB for H. Then, ∃y ∈ H − span(xj).

Thus, H = span(xj)
⊕

span(xj)
⊥

, so span(xj)
⊥

is nonempty. Hence, ∃z ∈ span(xj)
⊥

and z/||z||
has norm 1 and is perpendicular to xj ∀j ∈ J .

So far we have proved 1,2,3,4,6 are all equivalent.

(4 =⇒ 5) If we assume 4 then, for x, y ∈ H, x =
∑
J 〈x, xj〉xj, which is summable, so

as before, x = limn→∞∑n
i=1〈x, xi〉xi. Similarly for y. Thus, by the continuity of the inner

product,

〈x, y〉 = 〈 lim
n→∞

n∑
i=1

〈x, xi〉xi, lim
m→∞

m∑
k=1

〈y, xk〉xk〉

= lim
n→∞ lim

m→∞〈
m∑
i=1

〈x, xi〉xi,
n∑
k=1

〈y, xk〉xk〉

= lim
n→∞ lim

m→∞
n∑
i=1

m∑
k=1

〈〈x, xi〉xi, 〈y, xk〉xk〉

= lim
n→∞ lim

m→∞
n∑
i=1

m∑
k=1

〈x, xi〉〈y, xk〉〈xi, xk〉

= lim
n→∞

n∑
i=1

〈x, xi〉〈y, xi〉 by orthonormality

=
∑
J

〈x, xj〉〈y, xj〉 =
∑
J

〈x, xj〉〈xj, y〉.
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(5 =⇒ 6) Let x ∈ H. Choosing y = x in 5 gives

||x||2 = 〈x, x〉 =
∑
J

〈x, xj〉〈x, xj〉 =
∑
J

|〈x, xj〉|2.

1.36 Corollary. From the above, we see that if (xj)j∈J is an ONB then the map x 7→ (〈x, xj〉)j∈J
is an isometric isomorphism from H to l2(J ).

Proof. Let Φ : H→ l2(J ) be defined by Φ(x) = (〈x, xj〉)J .
By 6, ||x||2 =

∑
J |〈x, xj〉|2 = ||Φ(x)||2. Thus, Φ is an isometry.

Suppose x, y ∈ H and Φ(x) = Φ(y). Then, 〈x, xj〉 = 〈y, xj〉 for all j ∈ J . Thus, by 4
x =
∑
J 〈x, xj〉 =

∑
J 〈y, xj〉 = y. Hence, Φ is injective.

Suppose, (aj) ∈ l2(J ). Then,
∑
J |aj|

2 is summable in R so
∑
J ajxj is summable in H. Let

x =
∑
J ajxj. Then, Φ(x) = (aj) so Φ is surjective.

Let a, b ∈ C and x, y ∈ H. Then,

Φ(ax+y) = (〈ax+y, xj〉)J = (a〈x, xj〉+〈y, xj〉)J = a(〈x, xj〉)J +(〈y, xj〉)J = aΦ(x)+Φ(y).

Thus, Φ is linear.
By 5, we have that for x, y ∈ H,

〈Φ(x), Φ(y)〉 = 〈(〈x, xj〉)J , (〈x, xj〉)J 〉 =
∑
j∈J

〈x, xj〉〈y, xj〉 = 〈x, y〉.

Therefore, Φ is an isometric isomorphism.

Warm down:

1.37 Question. What is an ONB for l2([0, 1])?

Choosing

xj(r) =

{
1 r = j

0 r 6= j

gives an ONB for l2([0, 1]).
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