
Lecture Notes from September 6, 2022
taken by Caleb Barnett

Last Time

• Dual Spaces

• Riesz Representation Theorem

• Summability

• Orthonormal bases

Warm up:

1.38 Question. Describe the dual space of l2([0, 1]).

From Riesz Rep, we know that every element in (l2([0, 1])) ′ is a bounded linear functional
Λ : l2([0, 1]) → C given by

Λx = 〈x, y〉 =
∑
j∈[0,1]

xjyj

for a unique y ∈ l2([0, 1]), where from a previous lecture we know that yj 6= 0 for at most
countably many j.

Operators on Hilbert Spaces

We prepare for the discussion of spectral theory. The main ingredient is the map from an operator
A to its adjoint A∗. We recall the equivalence between continuity and boundedness.

1.39 Theorem. Let H1, H2 be Hilbert spaces and A : H1 → H2 a linear map. Then A is
continuous if and only if ‖A‖ = sup

‖x‖≤1
‖Ax‖.

1.40 Remark. For linear maps, continuity of a linear map ⇔ continuity at zero, since any open
neighborhood of a point x can be “linearly” translated to an open neighborhood of 0 and vice
versa.

1.41 Remark. In this case, ‖A‖ is the Lipschitz constant of the (Lipschitz) continuous map A.
This motivates calling A bounded, because A(B1(0)) is.
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1.42 Definition. We write B(H1,H2) for the set of all bounded linear operators from H1 to
H2, and B(H) for the case H = H1 = H2.

We recall that if A : H1 → H2 is continuous, then the pullback A ′ : H ′2 → H ′1, defined by
A ′(f) = f ◦A is a bounded linear map if f is bounded.

If φ1 : H1 → H ′1, φ2 : H2 → H ′2 are the conjugate linear maps from Riesz Rep, we define
the adjoint A∗, a map from H2 to H1:

A∗ = φ−1
1 ◦A ′ ◦ φ2

Since φ1, φ2 are conjugate linear isometries, A∗ is linear, and we have the following proposi-
tion:

1.43 Proposition. ‖A‖ = ‖A ′‖ = ‖A∗‖.

Proof. We use the fact in the second equality that when ‖Ax‖ 6= 0, there exists a vector
y = Ax

‖Ax‖ ∈ H2 with norm 1, so by Cauchy Schwarz,

‖A‖ = sup
‖x‖≤1
‖Ax‖ = sup

‖x‖≤1
sup
‖y‖≤1

|〈Ax, y〉|.

And as a consequence of Riesz Rep, we have the following:

‖A‖ = sup
‖x‖≤1

sup
‖f‖≤1

|f(Ax)|

= sup
‖f‖≤1

sup
‖x‖≤1

|f(Ax)|

= sup
‖f‖≤1

sup
‖x‖≤1

|(A ′f)x|

= sup
‖f‖≤1
‖A ′f‖

= ‖A ′‖.

Since φ1, φ2 are conjugate linear isometric bijections,

‖A ′‖ = sup
‖f‖≤1
‖A ′f‖

= sup
‖φ2(x)‖≤1

‖A ′(φ2(x))‖

= sup
‖x‖≤1
‖A ′(φ2(x))‖ (By Riesz Rep)

= sup
‖x‖≤1
‖φ−1

1 (A ′(φ2(x)))‖

= ‖A∗‖.
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The following commutative diagram illustrates the relationship between the pullback and
adjoint map:

H2 H1

H ′2 H ′1

A∗

φ2 φ1

A ′

From the diagram, we acquire an important property of A∗:

〈Ax, y〉 = φ2(y)(Ax)
= A ′(φ2(y))(x)

= φ1(A
∗(y))(x)

= 〈x,A∗(y)〉.

1.44 Theorem. LetH1 andH2 be Hilbert spaces, then the adjoint map B(H1,H2) → B(H2,H1),
A 7→ A∗ is a conjugate linear map that is an isometry with respect to the operator norm. More-
over, for A ∈ B(H1,H2), B ∈ B(H2,H3):

1. A∗ is characterized by the identity 〈Ax, y〉 = 〈x,A∗y〉 for each x ∈ H1, y ∈ H2

2. (BA)∗ = A∗B∗

3. (A∗)∗ = A

4. ‖A∗A‖ = ‖AA∗‖ = ‖A‖2

Proof. (1) We want to determine A∗y for any y ∈ H2. Since x 7→ 〈Ax, y〉 is a bounded linear
functional, by Riesz Representation Theorem, there is a z ∈ H1 such that

〈Ax, y〉 = 〈x, z〉 = 〈x,A∗y〉.

So for each x ∈ H1,
〈x,A∗y− z〉 = 0.

Hence, A∗y− z = 0 or A∗y = z.

(2) From (1), we only need to consider inner products, say with x ∈ H1, z ∈ H3
〈BAx, z〉H3

= 〈Ax,B∗z〉H2

= 〈x,A∗B∗z〉H1

So (BA)∗ = A∗B∗.

(3) We have for x ∈ H1, y ∈ H2,

〈Ax, y〉 = 〈x,A∗y〉
= 〈A∗y, x〉
= 〈y, (A∗)∗x〉
= 〈(A∗)∗x, y〉

So 〈(A− (A∗)∗)x, y〉 = 0, thus A = (A∗)∗.
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(4) For x ∈ H1,

‖Ax‖2 = 〈Ax,Ax〉
= 〈x,A∗Ax〉
≤ ‖x‖‖A∗Ax‖
≤ ‖x‖‖A∗A‖‖x‖

Supping over norm ‖x‖ ≤ 1, by Proposition 1.40,

‖A‖2 ≤ sup
‖x‖≤1
‖Ax‖2 ≤ ‖A∗A‖ ≤ ‖A∗‖‖A‖ = ‖A‖2.

So equality holds throughout, and ‖A‖2 = ‖A∗‖2 = ‖A∗A‖. Flipping A and A∗ also gives
‖A‖2 = ‖AA∗‖.

1.45 Corollary. If H is a Hilbert space, then B(H) → B(H), A 7→ A∗ is a conjugate linear
isometry.

Now we can explore relationships in order to distinguish between different types of operators.

1.46 Definition. Let H1, H2 be Hilbert spaces, A ∈ B(H1,H2).

(a) A is called unitary if A∗A = idH1
and AA∗ = idH2

.

(b) If H1 = H2, then A is called self-adjoint, or Hermitian, if A∗ = A.

It is called skew-Hermitian if A∗ = −A.

(c) If H1 = H2 and A∗A = AA∗, then we say that A is normal.
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