Lecture Notes from September 6, 2022

taken by Caleb Barnett

Last Time

- Dual Spaces
- Riesz Representation Theorem
- Summability
- Orthonormal bases

Warm up:

1.38 Question. Describe the dual space of $l^{2}([0,1])$.

From Riesz Rep, we know that every element in $\left(l^{2}([0,1])\right)^{\prime}$ is a bounded linear functional $\Lambda: l^{2}([0,1]) \rightarrow \mathbb{C}$ given by

$$
\Lambda x=\langle x, y\rangle=\sum_{j \in[0,1]} x_{j} \overline{y_{j}}
$$

for a unique $y \in l^{2}([0,1])$, where from a previous lecture we know that $y_{j} \neq 0$ for at most countably many j .

Operators on Hilbert Spaces

We prepare for the discussion of spectral theory. The main ingredient is the map from an operator A to its adjoint A^{*}. We recall the equivalence between continuity and boundedness.
1.39 Theorem. Let $\mathcal{H}_{1}, \mathcal{H}_{2}$ be Hilbert spaces and $\mathcal{A}: \mathcal{H}_{1} \rightarrow \mathcal{H}_{2}$ a linear map. Then A is continuous if and only if $\|A\|=\sup _{\|x\| \leq 1}\|A x\|$.
1.40 Remark. For linear maps, continuity of a linear map \Leftrightarrow continuity at zero, since any open neighborhood of a point x can be "linearly" translated to an open neighborhood of 0 and vice versa.
1.41 Remark. In this case, $\|A\|$ is the Lipschitz constant of the (Lipschitz) continuous map A. This motivates calling A bounded, because $A\left(B_{1}(0)\right)$ is.
1.42 Definition. We write $\mathcal{B}\left(\mathcal{H}_{1}, \mathcal{H}_{2}\right)$ for the set of all bounded linear operators from \mathcal{H}_{1} to \mathcal{H}_{2}, and $\mathcal{B}(\mathcal{H})$ for the case $\mathcal{H}=\mathcal{H}_{1}=\mathcal{H}_{2}$.

We recall that if $A: \mathcal{H}_{1} \rightarrow \mathcal{H}_{2}$ is continuous, then the pullback $A^{\prime}: \mathcal{H}_{2}^{\prime} \rightarrow \mathcal{H}_{1}^{\prime}$, defined by $A^{\prime}(f)=f \circ A$ is a bounded linear map if f is bounded.

If $\phi_{1}: \mathcal{H}_{1} \rightarrow \mathcal{H}_{1}^{\prime}, \phi_{2}: \mathcal{H}_{2} \rightarrow \mathcal{H}_{2}^{\prime}$ are the conjugate linear maps from Riesz Rep, we define the adjoint \mathcal{A}^{*}, a map from \mathcal{H}_{2} to \mathcal{H}_{1} :

$$
A^{*}=\phi_{1}^{-1} \circ A^{\prime} \circ \phi_{2}
$$

Since ϕ_{1}, ϕ_{2} are conjugate linear isometries, A^{*} is linear, and we have the following proposition:
1.43 Proposition. $\|A\|=\left\|A^{\prime}\right\|=\left\|A^{*}\right\|$.

Proof. We use the fact in the second equality that when $\|A x\| \neq 0$, there exists a vector $y=\frac{A x}{\|A x\|} \in \mathcal{H}_{2}$ with norm 1, so by Cauchy Schwarz,

$$
\|A\|=\sup _{\|x\| \leq 1}\|A x\|=\sup _{\|x\| \leq 1\|y\| \leq 1} \sup _{1}|\langle A x, y\rangle| .
$$

And as a consequence of Riesz Rep, we have the following:

$$
\begin{aligned}
\|A\| & =\sup _{\|x\| \leq 1\|f\| \leq 1} \sup |f(A x)| \\
& =\sup _{\|f\| \leq 1\|x\| \leq 1} \sup |f(A x)| \\
& =\sup _{\|f\| \leq 1\|x\| \leq 1} \sup \left|\left(A^{\prime} f\right) x\right| \\
& =\sup _{\|f\| \leq 1}\left\|A^{\prime} f\right\| \\
& =\left\|A^{\prime}\right\| .
\end{aligned}
$$

Since ϕ_{1}, ϕ_{2} are conjugate linear isometric bijections,

$$
\begin{align*}
\left\|A^{\prime}\right\| & =\sup _{\|f\| \leq 1}\left\|A^{\prime} f\right\| \\
& =\sup _{\left\|\phi_{2}(x)\right\| \leq 1}\left\|A^{\prime}\left(\phi_{2}(x)\right)\right\| \\
& =\sup _{\|x\| \leq 1}\left\|A^{\prime}\left(\phi_{2}(x)\right)\right\| \tag{ByRieszRep}\\
& =\sup _{\|x\| \leq 1}\left\|\phi_{1}^{-1}\left(A^{\prime}\left(\phi_{2}(x)\right)\right)\right\| \\
& =\left\|A^{*}\right\| .
\end{align*}
$$

The following commutative diagram illustrates the relationship between the pullback and adjoint map:

From the diagram, we acquire an important property of λ^{*} :

$$
\begin{aligned}
\langle A x, y\rangle & =\phi_{2}(y)(A x) \\
& =A^{\prime}\left(\phi_{2}(y)\right)(x) \\
& =\phi_{1}\left(A^{*}(y)\right)(x) \\
& =\left\langle x, A^{*}(y)\right\rangle
\end{aligned}
$$

1.44 Theorem. Let \mathcal{H}_{1} and \mathcal{H}_{2} be Hilbert spaces, then the adjoint map $\mathcal{B}\left(\mathcal{H}_{1}, \mathcal{H}_{2}\right) \rightarrow \mathcal{B}\left(\mathcal{H}_{2}, \mathcal{H}_{1}\right)$, $A \mapsto A^{*}$ is a conjugate linear map that is an isometry with respect to the operator norm. Moreover, for $A \in \mathcal{B}\left(\mathcal{H}_{1}, \mathcal{H}_{2}\right), B \in \mathcal{B}\left(\mathcal{H}_{2}, \mathcal{H}_{3}\right)$:

1. A^{*} is characterized by the identity $\langle A x, y\rangle=\left\langle x, A^{*} y\right\rangle$ for each $x \in \mathcal{H}_{1}, y \in \mathcal{H}_{2}$
2. $(B A)^{*}=A^{*} B^{*}$
3. $\left(A^{*}\right)^{*}=A$
4. $\left\|A^{*} A\right\|=\left\|A A^{*}\right\|=\|A\|^{2}$

Proof. (1) We want to determine $A^{*} y$ for any $y \in \mathcal{H}_{2}$. Since $x \mapsto\langle A x, y\rangle$ is a bounded linear functional, by Riesz Representation Theorem, there is a $z \in \mathcal{H}_{1}$ such that

$$
\langle A x, y\rangle=\langle x, z\rangle=\left\langle x, A^{*} y\right\rangle .
$$

So for each $x \in \mathcal{H}_{1}$,

$$
\left\langle x, A^{*} y-z\right\rangle=0
$$

Hence, $A^{*} y-z=0$ or $A^{*} y=z$.
(2) From (1), we only need to consider inner products, say with $x \in \mathcal{H}_{1}, z \in \mathcal{H}_{3}$

$$
\begin{aligned}
\langle\mathrm{BAx}, z\rangle_{\mathcal{H}_{3}} & =\left\langle\mathrm{Ax}, \mathrm{~B}^{*} z\right\rangle_{\mathcal{H}_{2}} \\
& =\left\langle x, A^{*} \mathrm{~B}^{*} z\right\rangle_{\mathcal{H}_{1}}
\end{aligned}
$$

So $(B A)^{*}=A^{*} B^{*}$.
(3) We have for $x \in \mathcal{H}_{1}, y \in \mathcal{H}_{2}$,

$$
\begin{aligned}
\langle A x, y\rangle & =\left\langle x, A^{*} y\right\rangle \\
& =\overline{\left\langle A^{*} y, x\right\rangle} \\
& =\overline{\left\langle y,\left(A^{*}\right)^{*} x\right\rangle} \\
& =\left\langle\left(A^{*}\right)^{*} x, y\right\rangle
\end{aligned}
$$

So $\left\langle\left(A-\left(A^{*}\right)^{*}\right) x, y\right\rangle=0$, thus $A=\left(A^{*}\right)^{*}$.
(4) For $x \in \mathcal{H}_{1}$,

$$
\begin{aligned}
\|A x\|^{2} & =\langle A x, A x\rangle \\
& =\left\langle x, A^{*} A x\right\rangle \\
& \leq\|x\|\left\|A^{*} A x\right\| \\
& \leq\|x\|\left\|A^{*} A\right\|\|x\|
\end{aligned}
$$

Supping over norm $\|x\| \leq 1$, by Proposition 1.40,

$$
\|A\|^{2} \leq \sup _{\|x\| \leq 1}\|A x\|^{2} \leq\left\|A^{*} A\right\| \leq\left\|A^{*}\right\|\|A\|=\|A\|^{2}
$$

So equality holds throughout, and $\|A\|^{2}=\left\|A^{*}\right\|^{2}=\left\|A^{*} A\right\|$. Flipping A and A^{*} also gives $\|A\|^{2}=\left\|A A^{*}\right\|$.
1.45 Corollary. If \mathcal{H} is a Hilbert space, then $\mathcal{B}(\mathcal{H}) \rightarrow \mathcal{B}(\mathcal{H}), A \mapsto A^{*}$ is a conjugate linear isometry.

Now we can explore relationships in order to distinguish between different types of operators.
1.46 Definition. Let $\mathcal{H}_{1}, \mathcal{H}_{2}$ be Hilbert spaces, $A \in \mathcal{B}\left(\mathcal{H}_{1}, \mathcal{H}_{2}\right)$.
(a) A is called unitary if $A^{*} A=\mathrm{id}_{\mathcal{H}_{1}}$ and $A A^{*}=\mathrm{id}_{\mathcal{H}_{2}}$.
(b) If $\mathcal{H}_{1}=\mathcal{H}_{2}$, then \mathcal{A} is called self-adjoint, or Hermitian, if $\mathcal{A}^{*}=A$.

It is called skew-Hermitian if $A^{*}=-A$.
(c) If $\mathcal{H}_{1}=\mathcal{H}_{2}$ and $A^{*} A=A A^{*}$, then we say that \mathcal{A} is normal.

