Operators on Hilbert Spaces

Lecture Notes from September 6, 2022
taken by Manpreet Singh

Last Time

- Orthogonal family
- Orthonormal basis

Warm up

- Describe the dual space of $l^{2}([0,1])$.

Solution: Each element in $\left(l^{2}([0,1])\right)^{\prime}$ has the following form:

$$
\begin{aligned}
\lambda & : l^{2}([0,1]) \rightarrow \mathbb{C} \\
x & \mapsto \sum_{j \in[0,1]} x_{j} \bar{y}_{j}
\end{aligned}
$$

with $y \in l^{2}([0,1])$.
Now, we prepare for the discussion of spectral theory and the main ingredient for that is the map from an operator A to its adjoint A^{*}. Recall, the equivalence between continuity and boundedness.
1.39 Theorem. Let $\mathcal{H}_{1}, \mathcal{H}_{2}$ be Hilbert spaces and $A: \mathcal{H}_{1} \rightarrow \mathcal{H}_{2}$ a linear map, then A is continuous $\Longleftrightarrow\|A\|=\sup _{\|x\| \leq 1}\|A x\|<\infty$
1.40 Remark. In this case, $\|A\|$ is the Lipschitz constant of the (Lipschitz) continuous map A.
1.41 Definition. We write $\mathbb{B}\left(\mathcal{H}_{1}, \mathcal{H}_{2}\right)$ for the set of all bounded operators from \mathcal{H}_{1} to \mathcal{H}_{2} and $\mathbb{B}(\mathcal{H})$ for the case $\mathcal{H}=\mathcal{H}_{1}=\mathcal{H}_{2}$.
1.42 Proposition. If $A: \mathcal{H}_{1} \rightarrow \mathcal{H}_{2}$ is continuous, then $A^{\prime}: \mathcal{H}_{2}^{\prime} \rightarrow \mathcal{H}_{1}^{\prime}$, defined by

$$
A^{\prime}(f)=f \circ A
$$

is a bounded linear map with $\left\|A^{\prime}\right\|=\|A\|$

Proof.

$$
\|A\|=\sup _{\|x\| \leq 1}\|A x\|=\sup _{\|x\| \leq 1\|y\| \leq 1} \sup _{\| y}|\langle A x, y\rangle|
$$

for $x \in \mathcal{H}_{1}, y \in \mathcal{H}_{2}$

$$
\|A\|=\sup _{\|x\| \leq 1\|f\| \leq 1} \sup _{\| f}|f(A(x))|
$$

for $x \in \mathcal{H}_{1}, f \in \mathcal{H}_{2}^{\prime}$

$$
\|A\|=\sup _{\|f\| \leq 1} \sup _{\|x\| \leq 1}|f \circ A(x)|=\sup _{\|f\| \leq 1}\|f \circ A\|=\sup _{\|f\| \leq 1}\left\|A^{\prime}(f)\right\|=\left\|A^{\prime}\right\|
$$

If $\phi_{1}: \mathcal{H}_{1} \rightarrow \mathcal{H}_{1}^{\prime}$ and $\phi_{2}: \mathcal{H}_{2} \rightarrow \mathcal{H}_{2}^{\prime}$ are the conjugate linear maps from the Riesz representation theorem. We can define $A^{*}=\phi_{1}^{-1} \circ A^{\prime} \circ \phi_{2}$ a map from $\mathcal{H}_{2} \rightarrow \mathcal{H}_{1}$. Since ϕ_{1} and ϕ_{2} are conjugate linear isometries, A^{*} is linear and we have $\left\|A^{*}\right\|=\left\|A^{\prime}\right\|=\|A\|$. We have a commutative diagram.

For $x \in \mathcal{H}_{1}, y \in \mathcal{H}_{2}$

$$
\begin{gathered}
\langle A x, y\rangle=\phi_{2}(y)(A x) \\
\langle A x, y\rangle=A^{\prime}\left(\phi_{2}(y)\right)(x) \\
\langle A x, y\rangle=\phi_{1}\left(A^{*}(y)\right)(x) \\
\langle A x, y\rangle=\left\langle x, A^{*} y\right\rangle
\end{gathered}
$$

1.43 Theorem. Let \mathcal{H}_{1} and \mathcal{H}_{2} be Hilbert spaces, then the adjoint map $\mathbb{B}\left(\mathcal{H}_{1}, \mathcal{H}_{2}\right) \rightarrow \mathbb{B}\left(\mathcal{H}_{2}, \mathcal{H}_{1}\right)$, defined as $A \rightarrow A^{*}$ is a conjugate linear map that is an isometry with respect to operator norm. Moreover, for $A \in \mathbb{B}\left(\mathcal{H}_{1}, \mathcal{H}_{2}\right), B \in \mathbb{B}\left(\mathcal{H}_{2} \mathcal{H}_{3}\right)$

1. A^{*} is characterized by the identity $\langle A x, y\rangle=\left\langle x, A^{*} y\right\rangle$ for each $x \in \mathcal{H}_{1}, y \in \mathcal{H}_{2}$
2. $(B A)^{*}=A^{*} B^{*}$
3. $\left(A^{*}\right)^{*}=A$
4. $\left\|A^{*} A\right\|=\left\|A A^{*}\right\|=\|A\|^{2}$

Proof. 1. We want to determine $A^{*} y$ for any $y \in \mathcal{H}_{2}$. Since $x \mapsto\langle A x, y\rangle$ is a bounded linear functional. By Riesz representation theorem, there is $z \in \mathcal{H}_{1}$ such that

$$
\langle A x, y\rangle=\langle x, z\rangle
$$

We deduce that

$$
\left\langle x, A^{*} y\right\rangle=\langle x, z\rangle
$$

or, for each $x \in \mathcal{H}_{1}$,

$$
\left\langle x, A^{*} y-z\right\rangle=0
$$

Hence $A^{*} y-z=0 \Longrightarrow A^{*} y=z$.
2. From 1, we only need to consider inner products, say with $x \in \mathcal{H}_{1}, z \in \mathcal{H}_{3}$

$$
\begin{aligned}
\langle B(A x), z\rangle_{\mathcal{H}_{3}} & =\left\langle A x, B^{*} z\right\rangle_{\mathcal{H}_{2}} \\
\langle B(A x), z\rangle_{\mathcal{H}_{3}} & =\left\langle x, A^{*} B^{*} z\right\rangle_{\mathcal{H}_{1}}
\end{aligned}
$$

So, $(B A)^{*}=A^{*} B^{*}$
3. For $x \in \mathcal{H}_{1}, y \in \mathcal{H}_{2}$ we have,

$$
\begin{array}{r}
\langle A x, y\rangle=\left\langle x, A^{*} y\right\rangle \\
\langle A x, y\rangle=\overline{\left\langle A^{*} y, x\right\rangle} \\
\langle A x, y\rangle=\overline{\left\langle y,\left(A^{*}\right)^{*} x\right\rangle} \\
\langle A x, y\rangle=\left\langle\left(A^{*}\right)^{*} x, y\right\rangle
\end{array}
$$

So, $A=\left(A^{*}\right)^{*}$
4. For $x \in \mathcal{H}$

$$
\begin{aligned}
\|A x\|^{2} & =\langle A x, A x\rangle \\
\|A x\|^{2} & =\left\langle x, A^{*} A x\right\rangle
\end{aligned}
$$

By Cauchy-Schwarz inequality, we get

$$
\|A x\|^{2} \leq\|x\|\left\|A^{*} A x\right\|
$$

By operator norm, we get

$$
\|A x\|^{2} \leq\left\|A^{*} A\right\|\|x\|^{2}
$$

and so, taking sup over $\|x\| \leq 1$ we get,

$$
\|A\|^{2} \leq \sup _{\|x\| \leq 1}\|A x\|^{2} \leq\left\|A^{*} A\right\| \leq\left\|A^{*}\right\|\|A\|
$$

Since $\|A\|=\left\|A^{*}\right\|$, we get

$$
\|A\|^{2} \leq \sup _{\|x\| \leq 1}\|A x\|^{2} \leq\left\|A^{*} A\right\| \leq\left\|A^{*}\right\|\|A\|=\|A\|^{2}
$$

So equality holds throughout and

$$
\|A\|^{2}=\left\|A^{*}\right\|^{2}=\left\|A^{*} A\right\|
$$

Flipping A, A^{*} gives

$$
\|A\|^{2}=\left\|A A^{*}\right\|
$$

1.44 Corollary. If \mathcal{H} is a Hilbert Space, then $\mathbb{B}(\mathcal{H}) \rightarrow \mathbb{B}(\mathcal{H}), A \mapsto A^{*}$ is a conjugate linear isometry.

Now, we explore relationships between A and A^{*} in order to distinguish different types of operators.
1.45 Definition. Let $\mathcal{H}_{1}, \mathcal{H}_{2}$ be Hilbert spaces, $A \in \mathbb{B}\left(\mathcal{H}_{1}, \mathcal{H}_{2}\right)$

1. A is called unitary if $A^{*} A=i d_{\mathcal{H}_{1}}$ and $A A^{*}=i d_{\mathcal{H}_{2}}$.
2. If $\mathcal{H}_{1}=\mathcal{H}_{2}$, then A is called self adjoint or Hermitian if $A^{*}=A$, it is called Skew Hermitian if $A^{*}=-A$.
3. If $\mathcal{H}_{1}=\mathcal{H}_{2}$ and $A^{*} A=A A^{*}$ then we say that A is normal.
