Operators on Hilbert Spaces

Lecture Notes from September 6, 2022 taken by Manpreet Singh

Last Time

- Orthogonal family
- Orthonormal basis

Warm up

Describe the dual space of l²([0, 1]).
Solution: Each element in (l²([0, 1]))' has the following form:

$$\lambda : l^2([0,1]) \to \mathbb{C}$$
$$x \mapsto \sum_{j \in [0,1]} x_j \bar{y}_j$$

with $y \in l^2([0,1])$.

Now, we prepare for the discussion of spectral theory and the main ingredient for that is the map from an operator A to its adjoint A^* . Recall, the equivalence between continuity and boundedness.

1.39 Theorem. Let \mathcal{H}_1 , \mathcal{H}_2 be Hilbert spaces and $A : \mathcal{H}_1 \to \mathcal{H}_2$ a linear map, then A is continuous $\iff ||A|| = \sup_{||x|| < 1} ||Ax|| < \infty$

1.40 Remark. In this case, ||A|| is the Lipschitz constant of the (Lipschitz) continuous map A.

1.41 Definition. We write $\mathbb{B}(\mathcal{H}_1, \mathcal{H}_2)$ for the set of all bounded operators from \mathcal{H}_1 to \mathcal{H}_2 and $\mathbb{B}(\mathcal{H})$ for the case $\mathcal{H} = \mathcal{H}_1 = \mathcal{H}_2$.

1.42 Proposition. If $A : \mathcal{H}_1 \to \mathcal{H}_2$ is continuous, then $A' : \mathcal{H}'_2 \to \mathcal{H}'_1$, defined by

$$A'(f) = f \circ A$$

is a bounded linear map with ||A'|| = ||A||

Proof.

$$||A|| = \sup_{\|x\| \le 1} ||Ax|| = \sup_{\|x\| \le 1} \sup_{\|y\| \le 1} |\langle Ax, y\rangle|$$

for $x \in \mathcal{H}_1, y \in \mathcal{H}_2$

$$||A|| = \sup_{\|x\| \le 1} \sup_{\|f\| \le 1} |f(A(x))|$$

for $x \in \mathcal{H}_1, f \in \mathcal{H}'_2$

$$||A|| = \sup_{\|f\| \le 1} \sup_{\|x\| \le 1} |f \circ A(x)| = \sup_{\|f\| \le 1} ||f \circ A|| = \sup_{\|f\| \le 1} ||A'(f)|| = ||A'||$$

If $\phi_1 : \mathcal{H}_1 \to \mathcal{H}'_1$ and $\phi_2 : \mathcal{H}_2 \to \mathcal{H}'_2$ are the conjugate linear maps from the Riesz representation theorem. We can define $A^* = \phi_1^{-1} \circ A' \circ \phi_2$ a map from $\mathcal{H}_2 \to \mathcal{H}_1$. Since ϕ_1 and ϕ_2 are conjugate linear isometries, A^* is linear and we have $||A^*|| = ||A'|| = ||A||$. We have a commutative diagram.

. For $x \in \mathcal{H}_1$, $y \in \mathcal{H}_2$

$$\langle Ax, y \rangle = \phi_2(y)(Ax)$$
$$\langle Ax, y \rangle = A'(\phi_2(y))(x)$$
$$\langle Ax, y \rangle = \phi_1(A^*(y))(x)$$
$$\langle Ax, y \rangle = \langle x, A^*y \rangle$$

1.43 Theorem. Let \mathcal{H}_1 and \mathcal{H}_2 be Hilbert spaces, then the adjoint map $\mathbb{B}(\mathcal{H}_1, \mathcal{H}_2) \to \mathbb{B}(\mathcal{H}_2, \mathcal{H}_1)$, defined as $A \to A^*$ is a conjugate linear map that is an isometry with respect to operator norm. Moreover, for $A \in \mathbb{B}(\mathcal{H}_1, \mathcal{H}_2)$, $B \in \mathbb{B}(\mathcal{H}_2\mathcal{H}_3)$

- 1. A^* is characterized by the identity $\langle Ax, y \rangle = \langle x, A^*y \rangle$ for each $x \in \mathcal{H}_1$, $y \in \mathcal{H}_2$
- 2. $(BA)^* = A^*B^*$
- 3. $(A^*)^* = A$
- 4. $||A^*A|| = ||AA^*|| = ||A||^2$
- *Proof.* 1. We want to determine A^*y for any $y \in \mathcal{H}_2$. Since $x \mapsto \langle Ax, y \rangle$ is a bounded linear functional. By Riesz representation theorem, there is $z \in \mathcal{H}_1$ such that

$$\langle Ax, y \rangle = \langle x, z \rangle$$

We deduce that

$$\langle x, A^*y \rangle = \langle x, z \rangle$$

or, for each $x \in \mathcal{H}_1$,

$$\langle x, A^*y - z \rangle = 0$$

Hence $A^*y - z = 0 \implies A^*y = z$.

2. From 1, we only need to consider inner products, say with $x \in \mathcal{H}_1$, $z \in \mathcal{H}_3$

$$\langle B(Ax), z \rangle_{\mathcal{H}_3} = \langle Ax, B^*z \rangle_{\mathcal{H}_2}$$
$$\langle B(Ax), z \rangle_{\mathcal{H}_3} = \langle x, A^*B^*z \rangle_{\mathcal{H}_1}$$

So, $(BA)^* = A^*B^*$

3. For $x \in \mathcal{H}_1$, $y \in \mathcal{H}_2$ we have,

So, $A = (A^*)^*$

4. For $x \in \mathcal{H}$

$$||Ax||^{2} = \langle Ax, Ax \rangle$$
$$||Ax||^{2} = \langle x, A^{*}Ax \rangle$$

By Cauchy-Schwarz inequality, we get

$$||Ax||^2 \le ||x|| ||A^*Ax||$$

By operator norm, we get

$$||Ax||^2 \le ||A^*A|| ||x||^2$$

and so, taking sup over $||x|| \leq 1$ we get,

$$\|A\|^2 \le \sup_{\|x\| \le 1} \|Ax\|^2 \le \|A^*A\| \le \|A^*\| \|A\|$$

Since $||A|| = ||A^*||$, we get

$$|A||^{2} \leq \sup_{\|x\| \leq 1} \|Ax\|^{2} \leq \|A^{*}A\| \leq \|A^{*}\|\|A\| = \|A\|^{2}$$

So equality holds throughout and

$$||A||^2 = ||A^*||^2 = ||A^*A||$$

Flipping A, A^* gives

$$||A||^2 = ||AA^*||$$

1.44 Corollary. If \mathcal{H} is a Hilbert Space, then $\mathbb{B}(\mathcal{H}) \to \mathbb{B}(\mathcal{H}), A \mapsto A^*$ is a conjugate linear isometry.

Now, we explore relationships between A and A^* in order to distinguish different types of operators.

1.45 Definition. Let $\mathcal{H}_1, \mathcal{H}_2$ be Hilbert spaces, $A \in \mathbb{B}(\mathcal{H}_1, \mathcal{H}_2)$

- 1. A is called unitary if $A^*A = id_{\mathcal{H}_1}$ and $AA^* = id_{\mathcal{H}_2}$.
- 2. If $\mathcal{H}_1 = \mathcal{H}_2$, then A is called self adjoint or Hermitian if $A^* = A$, it is called Skew Hermitian if $A^* = -A$.
- 3. If $\mathcal{H}_1 = \mathcal{H}_2$ and $A^*A = AA^*$ then we say that A is normal.