Math 7320 Lecture Notes from September 8, 2022

prepared by Jessie McKim

September 20, 2022

Warm-Up: Let's give meaning to the statement "When dealing with complex matrices, the adjoint is the transpose conjugate."

We consider $\mathcal{H}=\mathbb{C}^{n}$. Associate with $n \times n$ complex matrix A, the map $x \rightarrow$ $A x$. The inner product is $<x, y>=\sum_{i=1}^{n} x_{i} \overline{y_{i}}$ We know A^{*} is characterized by the identity for each $x, y \in \mathbb{C}^{n},<A x, y>=<x, A^{*} y>$,
$<A x, y>=\sum_{i=1}^{n} A x_{i} \bar{y}_{i}$
$=\sum_{i=1}^{n} \sum_{j=1}^{n} A_{i j} x_{j} \overline{y_{i}}$
$=\sum_{j=1}^{n} x_{j} \overline{\sum_{i=1}^{n} \overline{A_{i j}^{T}} y_{i}}$
By comparing with the identity we can see that $\overline{\sum_{i=1}^{n} \overline{A_{i j}^{T}} y_{i}}=\overline{\left(A^{*} y\right)_{j}}$
Now, we will study the types of operators introduced in the last class.

1 Theorem

For $A \in \mathcal{B}(\mathcal{H})$ the following holds:

1. If A is Hermitian then A is normal
2. If A is unitary then A is normal
3. The operators $A A^{*}$ and $A^{*} A$ are Hermitian
4. There are uniquely determined Hermitian operators $B, C \in \mathcal{B}(\mathcal{H})$ such that $A=B+i C$
5. A is uniquely determined by the sesquilinear form $b_{A}: \mathcal{H} \times \mathcal{H} \rightarrow \mathbb{C}$, $(x, y) \rightarrow<A x, y>$
6. The following are equivalent
(a) the sesquilinear form b_{A} is Hermitian
(b) A is Hermitian
(c) $b_{A}(x, x) \in \mathbb{R}$ for each $x \in \mathcal{H}$. In this case A is determined by $x \rightarrow$ $b_{A}(x, x)$
7. If A is Hermitian and $<A x, y>=0$ for each $x \in \mathcal{H}$ then $A=0$

2 Proofs

1. By definition of A being normal and $A=A^{*}$
2. From $A A^{*}=i d_{\mathcal{H}}=A^{*} A$
3. We see $\left(A A^{*}\right)^{*}=\left(A^{*}\right) A^{*}=A A^{*}$ and $\left(A^{*} A\right)^{*}=A^{*}\left(A^{*}\right)^{*}=A^{*} A$
4. We get $A=B i+C$ with the choice $B=\frac{1}{2}\left(A+A^{*}\right), C=\frac{1}{2 i}\left(A-A^{*}\right)$ Moreover, if $A=B^{\prime}+i C^{\prime}$ with B^{\prime}, C^{\prime} Hermitian then $A^{*}=\left(B^{\prime}\right)^{*}+$ $\left(i C^{\prime}\right)^{*}=B^{\prime}-i C^{\prime}$ and $B^{\prime}=\frac{1}{2}\left(A+A^{*}\right), C^{\prime}=\frac{1}{2 i}\left(A-A^{*}\right)$ implies B, C are unique
5. We have $b_{A}(x, y)=<A x, y>=<x, A^{*} y>=\Phi\left(A^{*} y\right)(x)$ and by the Φ being one-to-one by the Riesz Representation Theorem A^{*} is uniquely determined by b_{A} hence also A
6. We observe for $b_{A}(y, x)=<A y, x>=<y, A^{*} x>=<A^{*} x, y>=b_{A^{*}}(x, y)$ so $A^{*}=A \Longleftrightarrow \forall x, y \in \mathcal{H}, b_{A}(y, x)=b_{A^{*}}(x, y)$ If A or b_{A} are Hermitian, then the Polarization Identity shows that b_{A} and hence A can be constructed from knowing $b_{A}(x, x)$ and for each $x \in \mathcal{H}$ If A is Hermitian then for $x \in \mathcal{H}, b_{A}(x, x)=\overline{b_{A}(x, x)} \in \mathbb{R}$
Conversely, if $b_{A}(x, x) \in \mathbb{R}$ for each $x \in \mathcal{H}$, we can write $A=B+i C$ and we have $b_{C}(x, x)=\operatorname{Im}\left[b_{A}(x, x)+i b_{C}(x, x)\right]=0$ Now using the Polarization Identity, $b_{C}(x, x)=0$ for each $x, y \in \mathcal{H}$ and hence $C=0$. Thus $A=B$ and A is Hermitian.
7. This follows from A being uniquely determined by b_{A} and $A=0$ having $\left.b_{A}(x, x)=<A x, x>=\right)$ for each $x \in \mathcal{H}$

Now let's examine isometries, a type of operator more general than unitaries. Recall that isometries are norm preserving.

Lemma: A is a bounded linear map such that $A: \mathcal{H}_{\infty} \rightarrow \mathcal{H}_{\in}$ is an isometry if and only if $A * A=i d_{\mathcal{H}_{\infty}}$

Proof: If A is an isometry then then for any $x \in \mathcal{H},<A^{*} A x, x>=<$ $A x, A x>=|A x|^{2}=|x|^{2}=<x, x>$ Using that $A^{*} A$ is Hermitian and hence uniquely characterized by $x \rightarrow<A^{*} A x, x>=|x|^{2}$ We get $A^{*} A=i d_{\mathcal{H}_{\infty}}$

Conversely, if $A^{*} A=i d_{\mathcal{H}_{\infty}}$ then $|A x|^{2}=<A x, A x>=<A^{*} A x, x>=|x|^{2}$ so A is an isometry.

Theorem: For a bounded linear map $A: \mathcal{H}_{\infty} \rightarrow \mathcal{H}_{\in}$ the following are equivalent

1. A is unitary
2. A is onto and preserves the inner product. For $x, y \in \mathcal{H},<A x, A y>=<$ $x, y>$
3. A is a bijection and preserves the inner product
4. A is onto and an isometry
