Math 7320 Lecture Notes from September 8, 2022

prepared by Jessie McKim

September 20, 2022

Warm-Up: Let's give meaning to the statement "When dealing with complex matrices, the adjoint is the transpose conjugate."

We consider $\mathcal{H} = \mathbb{C}^n$. Associate with $n \times n$ complex matrix A, the map $x \to Ax$. The inner product is $\langle x, y \rangle = \sum_{i=1}^n x_i \bar{y_i}$ We know A^* is characterized by the identity for each $x, y \in \mathbb{C}^n$, $\langle Ax, y \rangle = \langle x, A^* y \rangle$,

 $< Ax, y >= \sum_{i=1}^{n} Ax_i \bar{y}_i$ $= \sum_{i=1}^{n} \sum_{j=1}^{n} A_{ij} x_j \bar{y}_i$ $= \sum_{j=1}^{n} x_j \sum_{i=1}^{n} \overline{A_{ij}^T} y_i$

By comparing with the identity we can see that $\overline{\sum_{i=1}^{n} \overline{A_{ij}^T} y_i} = \overline{(A^* y)_j}$. Now, we will study the types of operators introduced in the last class.

1 Theorem

For $A \in \mathcal{B}(\mathcal{H})$ the following holds:

- 1. If A is Hermitian then A is normal
- 2. If A is unitary then A is normal
- 3. The operators AA^* and A^*A are Hermitian
- 4. There are uniquely determined Hermitian operators $B, C \in \mathcal{B}(\mathcal{H})$ such that A = B + iC
- 5. A is uniquely determined by the sesquilinear form $b_A : \mathcal{H} \times \mathcal{H} \to \mathbb{C}$, $(x, y) \to \langle Ax, y \rangle$
- 6. The following are equivalent
 - (a) the sesquilinear form b_A is Hermitian
 - (b) A is Hermitian
 - (c) $b_A(x,x) \in \mathbb{R}$ for each $x \in \mathcal{H}$. In this case A is determined by $x \to b_A(x,x)$
- 7. If A is Hermitian and $\langle Ax, y \rangle = 0$ for each $x \in \mathcal{H}$ then A = 0

2 Proofs

- 1. By definition of A being normal and $A=A^*$
- 2. From $AA^* = id_{\mathcal{H}} = A^*A$
- 3. We see $(AA^*)^* = (A^*)A^* = AA^*$ and $(A^*A)^* = A^*(A^*)^* = A^*A$
- 4. We get A = Bi + C with the choice $B = \frac{1}{2}(A + A^*), C = \frac{1}{2i}(A A^*)$ Moreover, if A = B' + iC' with B', C' Hermitian then $A^* = (B')^* + (iC')^* = B' - iC'$ and $B' = \frac{1}{2}(A + A^*), C' = \frac{1}{2i}(A - A^*)$ implies B, C are unique
- 5. We have $b_A(x,y) = \langle Ax, y \rangle = \langle x, A^*y \rangle = \Phi(A^*y)(x)$ and by the Φ being one-to-one by the Riesz Representation Theorem A^* is uniquely determined by b_A hence also A
- 6. We observe for $b_A(y, x) = \langle Ay, x \rangle = \langle y, A^*x \rangle = \langle A^*x, y \rangle = b_{A^*}(x, y)$ so $A^* = A \iff \forall x, y \in \mathcal{H}, b_A(y, x) = b_{A^*}(x, y)$ If A or b_A are Hermitian, then the Polarization Identity shows that b_A and hence A can be constructed from knowing $\underline{b}_A(x, x)$ and for each $x \in \mathcal{H}$ If A is Hermitian then for $x \in \mathcal{H}, b_A(x, x) = \overline{b}_A(x, x) \in \mathbb{R}$

Conversely, if $b_A(x, x) \in \mathbb{R}$ for each $x \in \mathcal{H}$, we can write A = B + iC and we have $b_C(x, x) = Im[b_A(x, x) + ib_C(x, x)] = 0$ Now using the Polarization Identity, $b_C(x, x) = 0$ for each $x, y \in \mathcal{H}$ and hence C = 0. Thus A = B and A is Hermitian.

7. This follows from A being uniquely determined by b_A and A = 0 having $b_A(x, x) = \langle Ax, x \rangle = \rangle$ for each $x \in \mathcal{H}$

Now let's examine isometries, a type of operator more general than unitaries. Recall that isometries are norm preserving.

Lemma: A is a bounded linear map such that $A : \mathcal{H}_{\infty} \to \mathcal{H}_{\in}$ is an isometry if and only if $A * A = id_{\mathcal{H}_{\infty}}$

Proof: If A is an isometry then then for any $x \in \mathcal{H}, \langle A^*Ax, x \rangle = \langle Ax, Ax \rangle = |Ax|^2 = |x|^2 = \langle x, x \rangle$ Using that A^*A is Hermitian and hence uniquely characterized by $x \to \langle A^*Ax, x \rangle = |x|^2$ We get $A^*A = id_{\mathcal{H}_{\infty}}$

Conversely, if $A^*A = id_{\mathcal{H}_{\infty}}$ then $|Ax|^2 = \langle Ax, Ax \rangle = \langle A^*Ax, x \rangle = |x|^2$ so A is an isometry.

Theorem: For a bounded linear map $A: \mathcal{H}_{\infty} \to \mathcal{H}_{\in}$ the following are equivalent

- 1. A is unitary
- 2. A is onto and preserves the inner product. For $x,y \in \mathcal{H}, < Ax, Ay > = < x, y >$
- 3. A is a bijection and preserves the inner product
- 4. A is onto and an isometry