
Lecture Notes from September 08, 2022
taken by Nick Fularczyk

Last time

• The adjoint of an operator,

• properties of the adjoint map A 7→ A∗,

• Types of operators: unitary, self-adjoint, normal.

Warm up:

1.47 Question. Give meaning to the statement ”when dealing with (complex) matrices, taking
the adjoint is the transpose conjugate.”

The idea is to use the characterizing principle of the adjoint, i.e. 〈Ax, y〉 = 〈x,A∗y〉 for
x, y ∈ H where H is a Hilbert space.

That is, we consider the Hilbert Space H = Cn associated with n × n matrix A the map
x 7→ Ax.

Note, the inner product is

〈x, y〉 =
n∑
i=1

xiyi

Observe that,

〈Ax, y〉 =
n∑
i=1

(Ax)iyi

=

n∑
i=1

n∑
j=1

Aijxjyi

=

n∑
j=1

xj

n∑
i=1

ATjiyi

=

n∑
j=1

xj(ATy)j

= 〈x,ATy〉

Therefore, A∗ = AT .
We now study the types of operators we introduced last time.
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1.48 Theorem. For A ∈ B(H), the following hold:

1. If A is Hermitian, then A is normal.

2. If A is Unitary, then A is normal.

3. The operators AA∗ and A∗A are Hermitian.

4. There are uniquely determined Hermitian operators B,C ∈ B(H) such the A = B+ iC.

5. A is uniquely determined by the sesquilinear form

bA : H×H 7→ C,
(x, y) 7→ 〈Ax, y〉.

6. The following are equivalent:

(a) The sesquilinear form bA is Hermitian.

(b) A is Hermitian.

(c) bA(x, x) ∈ R for each x ∈ H. In this case, A is determined by x 7→ bA(x, x).

7. If A is Hermitian, H is a complex Hilbert space, and 〈Ax, x〉 = 0 for each x ∈ H, then
A = 0.

Proof. (1) By definition of A being normal and A = A∗.
(2) Follows from AA∗ = idH = A∗A.
(3) We see that

(AA∗)∗ = (A∗)∗A∗

= AA∗

and

(A∗A)∗ = A∗(A∗)∗

= A∗A.

(4) We get A = B+ iC with the choice

B =
1

2
(A+A∗), C =

1

2i
(A−A∗)

Moreover, if A = B ′ + iC ′ with B ′, C ′ Hermitian, then

A∗ = (B ′)∗ + (iC ′)∗

= B ′ − iC ′

so,

B ′ =
1

2
(A+A∗)
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and

C ′ =
1

2i
(A−A∗)

Hence, B and C are the unique choice.
(5) We have,

bA(x, y) = 〈Ax, y〉
= 〈x,A∗y〉
= φ(A∗y)(x)

where the last line follows from the Riesz Representation Theorem. Moreover, φ is injective, so
A∗ is uniquely determined by bA, hence also A.
(6) Let us first show that (a) is equivalent to (b). We observe that,

bA(y, x) = 〈Ay, x〉
= 〈y,A∗x〉
= 〈A∗x, y〉
= bA∗(x, y)

This shows that A∗ = A if and only if for each x, y ∈ H, bA(y, x) = bA(x, y) which proves that
(a) and (b) are equivalent.
Let us now show that (a) and (c) are equivalent. Suppose that the sesquilinear form bA is
Hermitian. It follows that bA(x, x) = bA(x, x) for each x ∈ H. Hence, bA(x, x) ∈ R for each
x ∈ H. Moreover, since bA is a Hermitian sesquilinear form on a complex vector space, in this
case H, the Polarization Identity

b(x, y) =
1

4
(b(x+ y, x+ y) − b(x− y, x− y) + ib(x+ iy, x+ iy) − ib(x− iy, x− iy))

holds for all x, y ∈ H. Therefore, the form is determined by knowing bA(v, v) for all v ∈ H.
Conversely, suppose bA(x, x) ∈ R for each x ∈ H. We can write A = B + iC where B,C are
Hermitian operators, and from this we can show that,

bA(x, x) = bB(x, x) + ibC(x, x)

for all x ∈ H. Moreover, since B,C are Hermitian, we have that bB(x, x) ∈ R and bC(x, x) ∈ R.
Using this and our initial assumption, it follows that,

bC(x, x) = Im[bB(x, x) + ibC(x, x)] = 0.

Now, the polarization identity gives that bC(x, y) = 0 for each x, y ∈ H. Hence,

C = 0.

Thus, A = B and A is Hermitian.
(7) This follows from A being uniquely determined by bA and A = 0 having bA(x, x) = 〈Ax, x〉 =
0 for each x ∈ H.
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We now examine a type of operator that is more general than unitary isometries.

1.49 Lemma. A bounded linear map A : H1 7→ H2 is an isometry if and only if

A∗A = idH1

Proof. If A is an isometry, then for x ∈ H,

〈A∗Ax, x〉 = 〈Ax,Ax〉
= ‖Ax‖2

= ‖x‖2

= 〈x, x〉

Using that A∗A is Hermitian and hence uniquely characterized by x 7→ 〈A∗Ax, x〉 = ‖x‖2.
We get

A∗A = idH1
.

Conversely, if A∗A = idH1
, then

‖Ax‖2 = 〈Ax,Ax〉
= 〈A∗Ax, x〉
= ‖x‖2

So, A is an isometry.

1.50 Theorem. For a bounded linear map, A : H1 7→ H2 the following are equivalent:

1. A is unitary.

2. A is onto and preserves the inner product, i.e. for x, y ∈ H, 〈Ax,Ay〉 = 〈x, y〉.

3. A is a bijection and preserves the inner product.

4. A is onto and an isometry.
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