Lecture Notes from September 08, 2022

taken by Nick Fularczyk

Last time

- The adjoint of an operator,
- properties of the adjoint map $A \mapsto A^*$,
- Types of operators: unitary, self-adjoint, normal.

Warm up:

1.47 Question. Give meaning to the statement "when dealing with (complex) matrices, taking the adjoint is the transpose conjugate."

The idea is to use the characterizing principle of the adjoint, i.e. $\langle Ax, y \rangle = \langle x, A^*y \rangle$ for $x, y \in \mathcal{H}$ where \mathcal{H} is a Hilbert space.

That is, we consider the Hilbert Space $\mathcal{H} = \mathbb{C}^n$ associated with $n \times n$ matrix A the map $x \mapsto Ax$.

Note, the inner product is

$$\langle x,y\rangle = \sum_{i=1}^{n} x_i \overline{y_i}$$

Observe that,

$$\begin{split} \langle Ax, y \rangle &= \sum_{i=1}^{n} (Ax)_{i} \overline{y_{i}} \\ &= \sum_{i=1}^{n} \sum_{j=1}^{n} A_{ij} x_{j} \overline{y_{i}} \\ &= \sum_{j=1}^{n} x_{j} \overline{\sum_{i=1}^{n} \overline{A_{ji}^{\mathsf{T}}} y_{i}} \\ &= \sum_{j=1}^{n} x_{j} \overline{(\overline{A^{\mathsf{T}}} y)_{j}} \\ &= \langle x, \overline{A^{\mathsf{T}}} y \rangle \end{split}$$

Therefore, $A^* = \overline{A^T}$.

We now study the types of operators we introduced last time.

1.48 Theorem. For $A \in B(\mathcal{H})$, the following hold:

- 1. If A is Hermitian, then A is normal.
- 2. If A is Unitary, then A is normal.
- 3. The operators AA* and A*A are Hermitian.
- 4. There are uniquely determined Hermitian operators $B, C \in B(\mathcal{H})$ such the A = B + iC.
- 5. A is uniquely determined by the sesquilinear form

$$egin{aligned} & \mathfrak{b}_A:\mathcal{H} imes\mathcal{H}\mapsto\mathbb{C},\ & (x,y)\mapsto\langle Ax,y
angle \end{aligned}$$

- 6. The following are equivalent:
 - (a) The sesquilinear form b_A is Hermitian.
 - (b) A is Hermitian.
 - (c) $b_A(x,x) \in \mathbb{R}$ for each $x \in \mathcal{H}$. In this case, A is determined by $x \mapsto b_A(x,x)$.
- 7. If A is Hermitian, H is a complex Hilbert space, and $\langle Ax, x \rangle = 0$ for each $x \in H$, then A = 0.

Proof. (1) By definition of A being normal and $A = A^*$. (2) Follows from $AA^* = id_{\mathcal{H}} = A^*A$.

(3) We see that

$$(AA^*)^* = (A^*)^*A^*$$
$$= AA^*$$

and

$$(A^*A)^* = A^*(A^*)^*$$
$$= A^*A.$$

(4) We get A = B + iC with the choice

$$B = \frac{1}{2}(A + A^*), \quad C = \frac{1}{2i}(A - A^*)$$

Moreover, if A = B' + iC' with B', C' Hermitian, then

$$A^* = (B')^* + (iC')^*$$

= B' - iC'

so,

$$\mathsf{B}' = \frac{1}{2}(\mathsf{A} + \mathsf{A}^*)$$

and

$$C' = \frac{1}{2i}(A - A^*)$$

Hence, B and C are the unique choice. (5) We have,

$$b_A(x, y) = \langle Ax, y \rangle$$

= $\langle x, A^*y \rangle$
= $\phi(A^*y)(x)$

where the last line follows from the Riesz Representation Theorem. Moreover, ϕ is injective, so A^* is uniquely determined by b_A , hence also A.

(6) Let us first show that (a) is equivalent to (b). We observe that,

$$\overline{b_{A}(y,x)} = \overline{\langle Ay, x \rangle}$$
$$= \overline{\langle y, A^{*}x \rangle}$$
$$= \langle A^{*}x, y \rangle$$
$$= b_{A^{*}}(x, y)$$

This shows that $A^* = A$ if and only if for each $x, y \in \mathcal{H}$, $\overline{b_A(y, x)} = b_A(x, y)$ which proves that (a) and (b) are equivalent.

Let us now show that (a) and (c) are equivalent. Suppose that the sesquilinear form b_A is Hermitian. It follows that $b_A(x, x) = \overline{b_A(x, x)}$ for each $x \in \mathcal{H}$. Hence, $b_A(x, x) \in \mathbb{R}$ for each $x \in \mathcal{H}$. Moreover, since b_A is a Hermitian sesquilinear form on a complex vector space, in this case \mathcal{H} , the *Polarization Identity*

$$b(x,y) = \frac{1}{4}(b(x+y,x+y) - b(x-y,x-y) + ib(x+iy,x+iy) - ib(x-iy,x-iy))$$

holds for all $x, y \in \mathcal{H}$. Therefore, the form is determined by knowing $b_A(v, v)$ for all $v \in \mathcal{H}$. Conversely, suppose $b_A(x, x) \in \mathbb{R}$ for each $x \in \mathcal{H}$. We can write A = B + iC where B, C are Hermitian operators, and from this we can show that,

$$b_A(x, x) = b_B(x, x) + ib_C(x, x)$$

for all $x \in \mathcal{H}$. Moreover, since B, C are Hermitian, we have that $b_B(x, x) \in \mathbb{R}$ and $b_C(x, x) \in \mathbb{R}$. Using this and our initial assumption, it follows that,

$$\mathbf{b}_{\mathrm{C}}(\mathbf{x},\mathbf{x}) = \mathrm{Im}[\mathbf{b}_{\mathrm{B}}(\mathbf{x},\mathbf{x}) + \mathrm{i}\mathbf{b}_{\mathrm{C}}(\mathbf{x},\mathbf{x})] = \mathbf{0}.$$

Now, the polarization identity gives that $b_C(x,y) = 0$ for each $x, y \in \mathcal{H}$. Hence,

$$C = 0.$$

Thus, A = B and A is Hermitian.

(7) This follows from A being uniquely determined by b_A and A = 0 having $b_A(x, x) = \langle Ax, x \rangle = 0$ for each $x \in \mathcal{H}$.

We now examine a type of operator that is more general than unitary isometries.

1.49 Lemma. A bounded linear map $A : \mathcal{H}_1 \mapsto \mathcal{H}_2$ is an isometry if and only if

$$A^*A = id_{\mathcal{H}_1}$$

Proof. If A is an isometry, then for $x \in \mathcal{H}$,

$$egin{aligned} &\langle A^*Ax,x
angle &=\langle Ax,Ax
angle \ &=\|Ax\|^2 \ &=\|x\|^2 \ &=\langle x,x
angle \end{aligned}$$

Using that A^*A is Hermitian and hence uniquely characterized by $x \mapsto \langle A^*Ax, x \rangle = \|x\|^2$. We get

$$A^*A = id_{\mathcal{H}_1}.$$

Conversely, if $A^*A = \text{id}_{\mathcal{H}_1},$ then

$$\|Ax\|^{2} = \langle Ax, Ax \rangle$$
$$= \langle A^{*}Ax, x \rangle$$
$$= \|x\|^{2}$$

So, A is an isometry.

1.50 Theorem. For a bounded linear map, $A : \mathcal{H}_1 \mapsto \mathcal{H}_2$ the following are equivalent:

- 1. A is unitary.
- 2. A is onto and preserves the inner product, i.e. for $x, y \in \mathcal{H}$, $\langle Ax, Ay \rangle = \langle x, y \rangle$.
- 3. A is a bijection and preserves the inner product.
- 4. A is onto and an isometry.