Lecture Notes from September 08, 2022

taken by Nick Fularczyk

Last time

- The adjoint of an operator,
- properties of the adjoint map $A \mapsto A^{*}$,
- Types of operators: unitary, self-adjoint, normal.

Warm up:

1.47 Question. Give meaning to the statement "when dealing with (complex) matrices, taking the adjoint is the transpose conjugate."

The idea is to use the characterizing principle of the adjoint, i.e. $\langle A x, y\rangle=\left\langle x, A^{*} y\right\rangle$ for $x, y \in \mathcal{H}$ where \mathcal{H} is a Hilbert space.

That is, we consider the Hilbert Space $\mathcal{H}=\mathbb{C}^{n}$ associated with $n \times n$ matrix A the map $x \mapsto A x$.

Note, the inner product is

$$
\langle x, y\rangle=\sum_{i=1}^{n} x_{i} \overline{y_{i}}
$$

Observe that,

$$
\begin{aligned}
\langle A x, y\rangle & =\sum_{i=1}^{n}(A x)_{i} \overline{y_{i}} \\
& =\sum_{i=1}^{n} \sum_{j=1}^{n} A_{i j} x_{j} \overline{y_{i}} \\
& =\sum_{j=1}^{n} x_{j} \overline{\sum_{i=1}^{n} \overline{A_{j i}^{\top}} y_{i}} \\
& =\sum_{j=1}^{n} x_{j} \overline{\left(\overline{A^{\top}} y\right)_{j}} \\
& =\left\langle x, \overline{\bar{A}^{\top}} y\right\rangle
\end{aligned}
$$

Therefore, $A^{*}=\overline{\bar{A}^{\top}}$.
We now study the types of operators we introduced last time.
1.48 Theorem. For $A \in B(\mathcal{H})$, the following hold:

1. If A is Hermitian, then A is normal.
2. If A is Unitary, then A is normal.
3. The operators $A A^{*}$ and $A^{*} A$ are Hermitian.
4. There are uniquely determined Hermitian operators $B, C \in B(\mathcal{H})$ such the $A=B+i C$.
5. A is uniquely determined by the sesquilinear form

$$
\begin{aligned}
\mathrm{b}_{\mathrm{A}}: \mathcal{H} \times \mathcal{H} & \mapsto \mathbb{C}, \\
(x, y) & \mapsto\langle\mathrm{A} x, y\rangle .
\end{aligned}
$$

6. The following are equivalent:
(a) The sesquilinear form b_{A} is Hermitian.
(b) A is Hermitian.
(c) $\mathrm{b}_{\mathrm{A}}(\mathrm{x}, \mathrm{x}) \in \mathbb{R}$ for each $\mathrm{x} \in \mathcal{H}$. In this case, A is determined by $\mathrm{x} \mapsto \mathrm{b}_{\mathrm{A}}(\mathrm{x}, \mathrm{x})$.
7. If \mathcal{A} is Hermitian, \mathcal{H} is a complex Hilbert space, and $\langle\mathcal{A x}, \mathrm{x}\rangle=0$ for each $x \in \mathcal{H}$, then $A=0$.

Proof. (1) By definition of A being normal and $A=A^{*}$.
(2) Follows from $A A^{*}=i d_{\mathcal{H}}=A^{*} A$.
(3) We see that

$$
\begin{aligned}
\left(A A^{*}\right)^{*} & =\left(A^{*}\right)^{*} A^{*} \\
& =A A^{*}
\end{aligned}
$$

and

$$
\begin{aligned}
\left(A^{*} A\right)^{*} & =A^{*}\left(A^{*}\right)^{*} \\
& =A^{*} A .
\end{aligned}
$$

(4) We get $A=B+i C$ with the choice

$$
B=\frac{1}{2}\left(A+A^{*}\right), \quad C=\frac{1}{2 i}\left(A-A^{*}\right)
$$

Moreover, if $A=B^{\prime}+i C^{\prime}$ with B^{\prime}, C^{\prime} Hermitian, then

$$
\begin{aligned}
A^{*} & =\left(B^{\prime}\right)^{*}+\left(i C^{\prime}\right)^{*} \\
& =\mathrm{B}^{\prime}-\mathrm{iC}^{\prime}
\end{aligned}
$$

so,

$$
B^{\prime}=\frac{1}{2}\left(A+A^{*}\right)
$$

and

$$
C^{\prime}=\frac{1}{2 i}\left(A-A^{*}\right)
$$

Hence, B and C are the unique choice.
(5) We have,

$$
\begin{aligned}
\mathrm{b}_{\mathcal{A}}(\mathrm{x}, \mathrm{y}) & =\langle A x, y\rangle \\
& =\left\langle x, A^{*} y\right\rangle \\
& =\phi\left(A^{*} y\right)(x)
\end{aligned}
$$

where the last line follows from the Riesz Representation Theorem. Moreover, ϕ is injective, so A^{*} is uniquely determined by b_{A}, hence also A.
(6) Let us first show that (a) is equivalent to (b). We observe that,

$$
\begin{aligned}
\overline{b_{A}(y, x)} & =\overline{\langle A y, x\rangle} \\
& =\overline{\left\langle y, A^{*} x\right\rangle} \\
& =\left\langle A^{*} x, y\right\rangle \\
& =b_{A^{*}}(x, y)
\end{aligned}
$$

This shows that $A^{*}=A$ if and only if for each $x, y \in \mathcal{H}, \overline{b_{A}(y, x)}=b_{A}(x, y)$ which proves that (a) and (b) are equivalent.

Let us now show that (a) and (c) are equivalent. Suppose that the sesquilinear form b_{A} is Hermitian. It follows that $b_{A}(x, x)=\overline{b_{A}(x, x)}$ for each $x \in \mathcal{H}$. Hence, $b_{A}(x, x) \in \mathbb{R}$ for each $x \in \mathcal{H}$. Moreover, since b_{A} is a Hermitian sesquilinear form on a complex vector space, in this case \mathcal{H}, the Polarization Identity

$$
b(x, y)=\frac{1}{4}(b(x+y, x+y)-b(x-y, x-y)+\mathfrak{i b}(x+\mathfrak{i} y, x+\mathfrak{i} y)-\mathfrak{i b}(x-\mathfrak{i} y, x-\mathfrak{i} y))
$$

holds for all $x, y \in \mathcal{H}$. Therefore, the form is determined by knowing $b_{A}(v, v)$ for all $v \in \mathcal{H}$. Conversely, suppose $b_{A}(x, x) \in \mathbb{R}$ for each $x \in \mathcal{H}$. We can write $A=B+i C$ where B, C are Hermitian operators, and from this we can show that,

$$
b_{A}(x, x)=b_{B}(x, x)+i b_{C}(x, x)
$$

for all $x \in \mathcal{H}$. Moreover, since B, C are Hermitian, we have that $b_{B}(x, x) \in \mathbb{R}$ and $b_{C}(x, x) \in \mathbb{R}$. Using this and our initial assumption, it follows that,

$$
\mathrm{b}_{\mathrm{C}}(\mathrm{x}, \mathrm{x})=\operatorname{Im}\left[\mathrm{b}_{\mathrm{B}}(x, x)+\mathfrak{i b _ { C }}(x, x)\right]=0 .
$$

Now, the polarization identity gives that $b_{C}(x, y)=0$ for each $x, y \in \mathcal{H}$. Hence,

$$
C=0 .
$$

Thus, $A=B$ and A is Hermitian.
(7) This follows from A being uniquely determined by b_{A} and $A=0$ having $b_{A}(x, x)=\langle A x, x\rangle=$ 0 for each $x \in \mathcal{H}$.

We now examine a type of operator that is more general than unitary isometries.
1.49 Lemma. A bounded linear map $A: \mathcal{H}_{1} \mapsto \mathcal{H}_{2}$ is an isometry if and only if

$$
A^{*} A=i d_{\mathcal{H}_{1}}
$$

Proof. If A is an isometry, then for $x \in \mathcal{H}$,

$$
\begin{aligned}
\left\langle A^{*} A x, x\right\rangle & =\langle A x, A x\rangle \\
& =\|A x\|^{2} \\
& =\|x\|^{2} \\
& =\langle x, x\rangle
\end{aligned}
$$

Using that $A^{*} A$ is Hermitian and hence uniquely characterized by $x \mapsto\left\langle A^{*} A x, x\right\rangle=\|x\|^{2}$. We get

$$
A^{*} A=i d_{\mathcal{H}_{1}}
$$

Conversely, if $A^{*} A=i d_{\mathcal{H}_{1}}$, then

$$
\begin{aligned}
\|A x\|^{2} & =\langle A x, A x\rangle \\
& =\left\langle A^{*} A x, x\right\rangle \\
& =\|x\|^{2}
\end{aligned}
$$

So, A is an isometry.
1.50 Theorem. For a bounded linear map, $A: \mathcal{H}_{1} \mapsto \mathcal{H}_{2}$ the following are equivalent:

1. A is unitary.
2. A is onto and preserves the inner product, i.e. for $x, y \in \mathcal{H},\langle A x, A y\rangle=\langle x, y\rangle$.
3. A is a bijection and preserves the inner product.
4. A is onto and an isometry.
