Lecture Notes from September 13, 2022

taken by Alina Rajbhandari

Warm up:

1.47 Question. : Given an isometry $V : H \rightarrow H$, show that VV^* is an orthogonal projection. Here, the given map VV^* satisfies $\langle VV^*x, y \rangle = \langle V^*x, V^*y \rangle$

Consider

$$(\mathbf{V}\mathbf{V}^*)^* = (\mathbf{V}^*)^*\mathbf{V}^*$$
$$= \mathbf{V}\mathbf{V}^*$$

Thus, VV* is Hermitian. (by definition) We also know by assumption, VV* = id_H We can then see that

$$VV^*VV^* = V(V^*V)V^*$$
$$= V(id_H)V^*$$
$$= VV^*$$

Therefore, VV* is an orthogonal projection on a Hilbert space

We leave showing that this is an orthogonal projection to a result in this class.

1.48 Theorem. For a bounded linear map $A : H_1 \rightarrow H_2$, the following are equivalent:

- a) A is unitary
- b) A is onto and preserves the inner product, i.e, for $x, y \in H$, < Ax, Ay > = < x, y >
- c) A is the bijection and preserves the inner product
- d) A is onto and an isometry

Proof. a) \rightarrow b)

Since A is unitary, we know that A has an isometry and surjection. Thus, for each $x \in H_2$, we know that $AA^* = id_H$ and thus, $AA^*x = x$.

So, we can re-write it as $A(A^*)x = x$. Hence, A is surjective (onto). Now, the inner product is invariant by

$$< Ax, Ay > = < A^*Ax, y >$$

 $= < x, y >$

Thus, A is onto and preserves the inner product.

 $b) \rightarrow c)$

Here, given that A is onto and preserves the inner product. Now, A is 1-1 follows from

$$(||Ax||)^2 =$$

=< x, x >
= $(||x||)^2$

So, Ax = 0This implies that x = 0. Hence, A is one-one (injective) Thus, A is the bijection and preserves the inner product.

 $c) \rightarrow d)$

Since A is a bijection, we know that A is one-one and A is onto.

From the preservation of the inner product by $(||Ax||)^2 = (||x||)^2$ as in the proof of (c), we can see that the isometry property follows

(Here, $(||Ax||)^2 = (||x||)^2$ is the direct consequence of inner product being preserved.) Thus, A is onto and also an isometry.

 $d) \rightarrow a)$

From the isometry assumption, we know that, since A is an isometry, $A^*A = id_{H1}$ (from Lemma 1.49)

Then, we have,

$$A^*A = id_{H1}$$
$$AA^*A = A$$

Since A is onto, $AA^* = id_{H2}$ Therefore, A is unitary.

We could if needed extend, these equivalences to bijections between inner product spaces. Next, we see the characterization of normality in geometric terms, with the norm of image vectors. **1.49 Lemma.** An operator $A \in B(H)$ is normal iff for each $x \in H$, $||Ax|| = ||A^*x||$

Proof. Assume $||Ax|| = ||A^*x||$

Now, we have,

$$< (AA^* - A^*A)x, x > = < (AA^*x, x > - < A^*A)x, x > (Since Hermitian)$$
$$= < (A^*x, A^*x > - < Ax, Ax >$$
$$= (||A^*x||)^2 - (||Ax||)^2$$
$$= 0$$

Now, we know that AA^* and A^*A are Hermitian. Thus, we have, $AA^* - A^*A = 0$ because its quadratic form vanishes.

Conversely, Suppose that $AA^* = A^*A$. Here, we see this is true, which implies $(||A^*x||)^2 = (||Ax||)^2$ Thus, $||A^*x|| = ||Ax||$ Therefore, $A \in B(H)$ is normal iff for each $x \in H$, $||Ax|| = ||A^*x||$

Next, we study about how the adjoint of operator, range and kernel relates.

We write $\mathcal{N}(A)$ for the null space $\mathcal{N}(A) = A^{-1}(\{0\})$ and $\mathcal{R}(A)$ for the range $\mathcal{R}(A) = A(\mathcal{H})$

1.50 Lemma. For $A \in \mathcal{B}(\mathcal{H})$,

- 1. $\mathcal{N}(A) = \mathcal{R}(A^*)^{\perp}$
- 2. A closed subspace E is invariant under A, i.e, $A(E) \subset E$ if and only if E^{\perp} is invariant under A^*

Proof. :

1) We know that $< Ax, y> = < x, A^*y>$, Thus, Ax=0. This is equivalent to $x\in (R(A^*))^\perp$

2) Assume that $A(E)\subset E.$ Then for $\nu\in E^{\perp},$ $y\in E$, we have,

$$< A^* v, y > = < v, Ay >$$

= 0

Since $Ay \in E$ and E is invariant. Thus, $A^*(E^{\perp}) \subset E^{\perp}$ (because if we apply something to E, it's in E^{\perp}) Now, Conversely, Suppose $A^*(E^{\perp}) \subset E^{\perp}$. Then since E is a closed subspace, $E = (E^{\perp})^{\perp}$ and $A = (A^*)^*$ Thus, switching A and A^* in the preceeding result, we derive $A(E) \subset E$.

Finally, we will characterize the orthogonal projections

1.51 Theorem. Let $0 \neq P \in B(H)$ be a projection, i.e. $P^2 = P$, then the following are equivalent:

- 1. \mathcal{P} is an orthogonal projection, so $\mathcal{N}(\mathcal{P}) \perp \mathcal{R}(\mathcal{P})$
- 2. $||\mathcal{P}|| = 1$
- 3. $\langle \mathcal{P}x, x \rangle \geq 0$ for each $x \in \mathcal{H}$
- 4. $\mathcal{P} = \mathcal{P}^*$
- 5. \mathcal{P} is normal

Proof. :

We recall that if $\mathcal{P}^* = \mathcal{P}$. Then, we know that $\mathcal{H} = \mathcal{R}(\mathcal{P}) \bigoplus \mathcal{N}(\mathcal{P})$, because any vector x can be expressed as $x = \mathcal{P}x + (\mathcal{I} - \mathcal{P})x$.

Since \mathcal{P} is bounded, we see that both subspaces are closed and for any projection operator \mathcal{P} , we know that $(\mathcal{I} - \mathcal{P})^2 = (\mathcal{I} - \mathcal{P})$.

So,
$$Im(\mathcal{P}) = Ker (\mathcal{I} - \mathcal{P})$$
.

Now, if we apply this to our above projection operator, we will get, $\ker(\mathcal{P}) = \operatorname{Im}(\mathcal{I} - \mathcal{P})$ Thus, when we express any vector x as $x = \mathcal{P}x + (\mathcal{I} - \mathcal{P})x$, we have, $\mathcal{P}x$ is the image of \mathcal{P} and $(\mathcal{I} - \mathcal{P})x$ is in $\operatorname{Ker}(\mathcal{P})$.

Here, $\mathcal{N}(\mathcal{P})$ is closed because it is \mathcal{P}^{-1} of other vector. i.e, $\mathcal{N}(\mathcal{P}) = \mathcal{P}^{-1}$ ({0}) and, $\mathcal{R}(\mathcal{P})$ is identity of other vector i.e, $\mathcal{R}(\mathcal{P}) = (\mathcal{I} - \mathcal{P})^{-1}$ ({0}) So, we have $\mathcal{P}x \perp (I - \mathcal{P})x$

Now, 1) \rightarrow 2)

Let $\mathsf{E} = \mathcal{R}(\mathcal{P})$

By assumption, we have, $\mathcal{H} = E \bigoplus E^{\perp}$ with N(P) = E^{\perp} From $\mathcal{P} \neq 0$, $E \neq \{0\}$ Thus, there is $x\in\mathsf{E},\,\|x\|=1$

By,
$$\mathcal{P}^2 = \mathcal{P}$$
,
 $\mathcal{P}x = x$, $x \in \mathcal{R}(\mathcal{P})$
or, $||\mathcal{P}x|| = ||x|| = 1$
So, $||\mathcal{P}|| \ge 1$

On the other hand, given $x\in \mathcal{H},$ then x=y+z with $y\in \mathsf{E},\,z\in\mathsf{E}^{\bot}$ and

$$\begin{split} (||\mathcal{P}x||)^2 &= (||y||)^2 \\ &= (||x||)^2 - (||z||)^2 \\ &\leq (||x||)^2 \quad \text{(pythagorean Identity)} \\ \text{So,} \qquad ||P|| \leq 1 \end{split}$$

Therefore, since $\|P\| \leq 1$ and $\|P\| \geq 1,$ we know that $\|P\| = 1$