Lecture Notes from September 13, 2022

taken by Alina Rajbhandari

Warm up:

1.47 Question. : Given an isometry $\mathrm{V}: \mathrm{H} \rightarrow \mathrm{H}$, show that VV^{*} is an orthogonal projection.

Here, the given map V^{*} satisfies $\left\langle\mathrm{VV}^{*} \mathrm{x}, \mathrm{y}\right\rangle=\left\langle\mathrm{V}^{*} \mathrm{x}, \mathrm{V}^{*} \mathrm{y}\right\rangle$
Consider

$$
\begin{aligned}
\left(\mathrm{V} \mathrm{~V}^{*}\right)^{*} & =\left(\mathrm{V}^{*}\right)^{*} \mathrm{~V}^{*} \\
& =\mathrm{VV}^{*}
\end{aligned}
$$

Thus, VV^{*} is Hermitian. (by definition)
We also know by assumption, $\mathrm{VV}^{*}=\mathrm{id}_{\mathrm{H}}$
We can then see that

$$
\begin{aligned}
\mathrm{VV}^{*} \mathrm{VV}^{*} & =\mathrm{V}\left(\mathrm{~V}^{*} \mathrm{~V}\right) \mathrm{V}^{*} \\
& =\mathrm{V}\left(\mathrm{id}_{\mathrm{H}}\right) \mathrm{V}^{*} \\
& =\mathrm{VV}^{*}
\end{aligned}
$$

Therefore, VV^{*} is an orthogonal projection on a Hilbert space
We leave showing that this is an orthogonal projection to a result in this class.
1.48 Theorem. For a bounded linear map $A: H_{1} \rightarrow H_{2}$, the following are equivalent:
a) A is unitary
b) A is onto and preserves the inner product, i.e, for $x, y \in H,<A x, A y>=<x, y>$
c) A is the bijection and preserves the inner product
d) A is onto and an isometry

Proof. a) \rightarrow b)
Since A is unitary, we know that A has an isometry and surjection. Thus, for each $x \in H_{2}$, we know that $A A^{*}=i d_{\mathrm{H}}$ and thus, $A A^{*} \mathrm{x}=\mathrm{x}$.

So, we can re-write it as $A\left(\mathcal{A}^{*}\right) \mathrm{x}=\mathrm{x}$.
Hence, A is surjective (onto).
Now, the inner product is invariant by

$$
\begin{aligned}
<A x, A y> & =<A^{*} A x, y> \\
& =<x, y>
\end{aligned}
$$

Thus, A is onto and preserves the inner product.
b) \rightarrow c)

Here, given that A is onto and preserves the inner product. Now, A is $1-1$ follows from

$$
\begin{aligned}
(\|A x\|)^{2} & =<A x, A x> \\
& =<x, x> \\
& =(\|x\|)^{2}
\end{aligned}
$$

So, $\quad A x=0$
This implies that $x=0$.
Hence, A is one-one (injective)
Thus, A is the bijection and preserves the inner product.
c) $\rightarrow d$)

Since A is a bijection, we know that A is one-one and A is onto.
From the preservation of the inner product by $(\|A x\|)^{2}=(\|x\|)^{2}$ as in the proof of (c), we can see that the isometry property follows
(Here, $(\|A x\|)^{2}=(\|x\|)^{2}$ is the direct consequence of inner product being preserved.)
Thus, A is onto and also an isometry.
d) \rightarrow a)

From the isometry assumption, we know that, since A is an isometry, $A^{*} A=i d_{H 1}$ (from Lemma 1.49)

Then, we have,

$$
\begin{aligned}
A^{*} A & =\mathfrak{i d} \mathrm{H}_{1} \\
A A^{*} A & =A
\end{aligned}
$$

Since A is onto, $A A^{*}=i d_{\mathrm{H} 2}$
Therefore, A is unitary.

We could if needed extend, these equivalences to bijections between inner product spaces. Next, we see the characterization of normality in geometric terms, with the norm of image vectors.
1.49 Lemma. An operator $A \in B(H)$ is normal iff for each $x \in H,\|A x\|=\left\|A^{*} x\right\|$

Proof. Assume $\|A x\|=\left\|A^{*} x\right\|$
Now, we have,

$$
\begin{aligned}
<\left(A A^{*}-A^{*} A\right) x, x> & =<\left(A A^{*} x, x>-<A^{*} A\right) x, x>(\text { Since Hermitian }) \\
& =<\left(A^{*} x, A^{*} x>-<A x, A x>\right. \\
& =\left(\left\|A^{*} x\right\|\right)^{2}-(\|A x\|)^{2} \\
& =0
\end{aligned}
$$

Now, we know that $A A^{*}$ and $A^{*} \mathcal{A}$ are Hermitian.
Thus, we have, $A A^{*}-A^{*} A=0$ because its quadratic form vanishes.
Conversely, Suppose that $A A^{*}=A^{*} A$.
Here, we see this is true, which implies $\left(\left\|A^{*} x\right\|\right)^{2}=(\|A x\|)^{2}$
Thus, $\left\|A^{*} x\right\|=\|A x\|$
Therefore, $A \in B(H)$ is normal iff for each $x \in H,\|A x\|=\left\|A^{*} x\right\|$

Next, we study about how the adjoint of operator, range and kernel relates.
We write $\mathcal{N}(A)$ for the null space $\mathcal{N}(A)=A^{-1}(\{0\})$
and $\mathcal{R}(A)$ for the range $\mathcal{R}(A)=A(\mathcal{H})$
1.50 Lemma. For $A \in \mathcal{B}(\mathcal{H})$,

1. $\mathcal{N}(A)=\mathcal{R}\left(A^{*}\right)^{\perp}$
2. A closed subspace E is invariant under A, i.e, $A(E) \subset E$ if and only if E^{\perp} is invariant under A^{*}

Proof. :

1) We know that $\left\langle A x, y>=<x, A^{*} y>\right.$,

Thus, $A x=0$. This is equivalent to $x \in\left(R\left(A^{*}\right)\right)^{\perp}$
2) Assume that $A(E) \subset E$. Then for $v \in E^{\perp}, y \in E$, we have,

$$
\begin{aligned}
<A^{*} v, y> & =<v, A y> \\
& =0
\end{aligned}
$$

Since $A y \in E$ and E is invariant.
Thus, $A^{*}\left(E^{\perp}\right) \subset E^{\perp}$ (because if we apply something to E, it's in $E \perp$)
Now, Conversely, Suppose $A^{*}\left(E^{\perp}\right) \subset E^{\perp}$.
Then since E is a closed subspace,
$E=\left(E^{\perp}\right)^{\perp}$
and
$\mathrm{A}=\left(\mathrm{A}^{*}\right)^{*}$
Thus, switching A and A^{*} in the preceeding result, we derive $A(E) \subset E$.

Finally, we will characterize the orthogonal projections
1.51 Theorem. Let $0 \neq \mathcal{P} \in \mathcal{B}(\mathcal{H})$ be a projection, i.e. $\mathcal{P}^{2}=\mathcal{P}$, then the following are equivalent:

1. \mathcal{P} is an orthogonal projection, so $\mathcal{N}(\mathcal{P}) \perp \mathcal{R}(\mathcal{P})$
2. $\|\mathcal{P}\|=1$
3. $\langle\mathcal{P} x, x\rangle \geq 0$ for each $x \in \mathcal{H}$
4. $\mathcal{P}=\mathcal{P}^{*}$
5. \mathcal{P} is normal

Proof. :
We recall that if $\mathcal{P}^{*}=\mathcal{P}$. Then, we know that $\mathcal{H}=\mathcal{R}(\mathcal{P}) \bigoplus \mathcal{N}(\mathcal{P})$, because any vector x can be expressed as $\mathrm{x}=\mathcal{P} x+(\mathcal{I}-\mathcal{P}) \mathrm{x}$.
Since \mathcal{P} is bounded, we see that both subspaces are closed and for any projection operator \mathcal{P}, we know that $(\mathcal{I}-\mathcal{P})^{2}=(\mathcal{I}-\mathcal{P})$. So, $\operatorname{Im}(\mathcal{P})=\operatorname{Ker}(\mathcal{I}-\mathcal{P})$.
Now, if we apply this to our above projection operator, we will get, $\operatorname{ker}(\mathcal{P})=\operatorname{Im}(\mathcal{I}-\mathcal{P})$
Thus, when we express any vector x as $\mathrm{x}=\mathcal{P} \mathrm{P}+(\mathcal{I}-\mathcal{P}) \mathrm{x}$, we have, $\mathcal{P} \mathrm{x}$ is the image of \mathcal{P} and $(\mathcal{I}-\mathcal{P}) x$ is in $\operatorname{Ker}(\mathcal{P})$.
Here, $\mathcal{N}(\mathcal{P})$ is closed because it is \mathcal{P}^{-1} of other vector. i.e, $\mathcal{N}(\mathcal{P})=\mathcal{P}^{-1}(\{0\})$ and, $\mathcal{R}(\mathcal{P})$ is identity of other vector i.e, $\mathcal{R}(\mathcal{P})=(\mathcal{I}-\mathcal{P})^{-1}(\{0\})$
So, we have $\mathcal{P} x \perp(\mathrm{I}-\mathcal{P}) \mathrm{x}$
Now, 1) \rightarrow 2)
Let $\mathrm{E}=\mathcal{R}(\mathcal{P})$
By assumption, we have, $\mathcal{H}=\mathrm{E} \bigoplus \mathrm{E}^{\perp}$ with $\mathrm{N}(\mathrm{P})=\mathrm{E}^{\perp}$
From $\mathcal{P} \neq 0, \mathrm{E} \neq\{0\}$

Thus, there is $x \in E,\|x\|=1$

$$
\begin{aligned}
\text { By, } & & \mathcal{P}^{2} & =\mathcal{P}, \\
& \mathcal{P} x & =x, & x \in \mathcal{R}(\mathcal{P}) \\
\text { or, } & & \|\mathcal{P} x\| & =\|x\|=1 \\
& \text { So, } & & \|\mathcal{P}\|
\end{aligned}
$$

On the other hand, given $x \in \mathcal{H}$, then $x=y+z$ with $y \in E, z \in E^{\perp}$ and

$$
\begin{aligned}
(\|\mathcal{P} x\|)^{2} & =(\|y\|)^{2} \\
& =(\|x\|)^{2}-(\|z\|)^{2} \\
& \leq(\|x\|)^{2} \quad(\text { pythagorean Identity }) \\
\text { So, } \quad\|\mathrm{P}\| & \leq 1
\end{aligned}
$$

Therefore, since $\|P\| \leq 1$ and $\|P\| \geq 1$, we know that $\|P\|=1$

