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Warm up:

1.47 Question. : Given an isometry V : H → H, show that VV∗ is an orthogonal projection.

Here, the given map VV∗ satisfies < VV∗x, y > = < V∗x, V∗y >

Consider

(VV∗)∗ = (V∗)∗V∗

= VV∗

Thus, VV∗ is Hermitian. (by definition)
We also know by assumption, VV∗ = idH

We can then see that

VV∗VV∗ = V(V∗V)V∗

= V(idH)V
∗

= VV∗

Therefore, VV∗ is an orthogonal projection on a Hilbert space

We leave showing that this is an orthogonal projection to a result in this class.

1.48 Theorem. For a bounded linear map A : H1 → H2, the following are equivalent:

a) A is unitary

b) A is onto and preserves the inner product, i.e, for x, y ∈ H, < Ax,Ay > = < x, y >

c) A is the bijection and preserves the inner product

d) A is onto and an isometry

Proof. a) → b)
Since A is unitary, we know that A has an isometry and surjection. Thus, for each x ∈ H2, we
know that AA∗ = idH and thus, AA∗x = x.
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So, we can re-write it as A(A∗)x = x.
Hence, A is surjective (onto).
Now, the inner product is invariant by

< Ax,Ay > =< A∗Ax, y >

=< x, y >

Thus, A is onto and preserves the inner product.

b) → c)
Here, given that A is onto and preserves the inner product. Now, A is 1-1 follows from

(||Ax||)2 =< Ax,Ax >

=< x, x >

= (||x||)2

So, Ax = 0

This implies that x = 0.
Hence, A is one-one (injective)
Thus, A is the bijection and preserves the inner product.

c) → d)
Since A is a bijection, we know that A is one-one and A is onto.
From the preservation of the inner product by (||Ax||)2 = (||x||)2 as in the proof of (c), we can
see that the isometry property follows
(Here, (||Ax||)2 = (||x||)2 is the direct consequence of inner product being preserved.)
Thus, A is onto and also an isometry.

d) → a)
From the isometry assumption, we know that, since A is an isometry, A∗A = idH1 (from Lemma
1.49)
Then, we have,

A∗A = idH1

AA∗A = A

Since A is onto, AA∗ = idH2

Therefore, A is unitary.

We could if needed extend, these equivalences to bijections between inner product spaces.
Next, we see the characterization of normality in geometric terms, with the norm of image vectors.
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1.49 Lemma. An operator A ∈ B(H) is normal iff for each x ∈ H, ||Ax|| = ||A∗x||

Proof. Assume ||Ax|| = ||A∗x||

Now, we have,

< (AA∗ −A∗A)x, x > =< (AA∗x, x > − < A∗A)x, x > (Since Hermitian)

=< (A∗x,A∗x > − < Ax,Ax >

= (||A∗x||)2 − (||Ax||)2

= 0

Now, we know that AA∗ and A∗A are Hermitian.
Thus, we have, AA∗ - A∗A = 0 because its quadratic form vanishes.

Conversely, Suppose that AA∗ = A∗A.
Here, we see this is true, which implies (||A∗x||)2 = (||Ax||)2

Thus, ||A∗x|| = ||Ax||

Therefore, A ∈ B(H) is normal iff for each x ∈ H, ‖Ax‖ = ‖A∗x‖

Next, we study about how the adjoint of operator, range and kernel relates.

We write N (A) for the null space N (A) = A−1({0})
and R(A) for the range R(A) = A(H)

1.50 Lemma. For A ∈ B (H),

1. N (A) = R(A∗)⊥

2. A closed subspace E is invariant under A, i.e, A(E) ⊂ E if and only if E⊥ is invariant under
A∗

Proof. :
1) We know that < Ax, y > = < x,A∗y > ,

Thus, Ax = 0. This is equivalent to x ∈ (R(A∗))⊥

2) Assume that A(E) ⊂ E. Then for v ∈ E⊥, y ∈ E , we have,

< A∗v, y > =< v,Ay >

= 0
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Since Ay ∈ E and E is invariant.
Thus, A∗(E⊥) ⊂ E⊥ (because if we apply something to E, it’s in E⊥)

Now, Conversely, Suppose A∗(E⊥) ⊂ E⊥.
Then since E is a closed subspace,
E = (E⊥)⊥

and
A = (A∗)∗

Thus, switching A and A∗ in the preceeding result, we derive A(E) ⊂ E.

Finally, we will characterize the orthogonal projections

1.51 Theorem. Let 0 6= P ∈ B(H) be a projection, i.e. P2 = P , then the following are equiv-
alent:

1. P is an orthogonal projection, so N (P) ⊥ R(P)

2. ||P || = 1

3. < Px, x > ≥ 0 for each x ∈ H

4. P = P∗

5. P is normal

Proof. :
We recall that if P∗ = P . Then, we know that H = R(P)

⊕
N (P), because any vector x

can be expressed as x = Px + (I − P)x.
Since P is bounded, we see that both subspaces are closed and for any projection operator P ,
we know that (I − P)2 = (I − P).
So, Im(P) = Ker (I − P).
Now, if we apply this to our above projection operator, we will get, ker(P) = Im (I − P)
Thus, when we express any vector x as x = Px + (I − P)x, we have, Px is the image of P
and (I − P)x is in Ker(P).
Here, N (P) is closed because it is P−1 of other vector. i.e, N (P) = P−1 ({0})
and, R(P) is identity of other vector i.e, R(P) = (I − P)−1({0})
So, we have Px ⊥ (I− P)x

Now, 1) → 2)

Let E = R(P)
By assumption, we have, H = E

⊕
E⊥ with N(P) = E⊥

From P 6= 0, E 6= {0}
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Thus, there is x ∈ E, ||x|| = 1

By, P2 = P,
Px = x, x ∈ R(P)

or, ||Px|| = ||x|| = 1

So, ||P || ≥ 1

On the other hand, given x ∈ H, then x = y + z with y ∈ E, z ∈ E⊥ and

(||Px||)2 = (||y||)2

= (||x||)2 − (||z||)2

≤ (||x||)2 (pythagorean Identity)

So, ||P|| ≤ 1

Therefore, since ||P|| ≤ 1 and ||P|| ≥ 1, we know that ||P|| = 1

5


