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Warm up: Given an isometry V : H −→ H, show that V V ∗ is an orthogonal

projection.

Proof: Consider

(V V ∗)∗ = (V ∗)∗V ∗ = V V ∗ .

This implies that V V ∗ is Hermitian. Since V is an isometry, then by previous

Lemma, we have

V ∗V = idH ,

we see that,

(V V ∗)2 = V V ∗V V ∗ = V V ∗

=⇒ V V ∗ is a projection.

Now

〈V V ∗x, y〉 = 〈V ∗x, V ∗y〉 = 〈x, V V ∗y〉, ∀ x, y ∈ H .

Thus, V V ∗ is an orthogonal projection.

Motivation: Characterize unitaries as ”onto

isometries ”

Theorem 1. For a bounded linear map A : H1 −→ H2, the following are

equivalent:

1. A is unitary.

2. A is onto and preserves the inner product, i.e. for x, y ∈ H,

〈Ax,Ay〉 = 〈x, y〉 .
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3. A is a bijection and preserves the inner product.

4. A is onto and an isometry.

Proof: (1) =⇒ (2) For each x ∈ H2, we know that AA∗x = x. So

A(A∗x) = x and A∗x ∈ H1. Hence A is surjective (onto).

The inner product is invariant by

〈Ax,Ay〉 = 〈A∗Ax, y〉 = 〈x, y〉, ∀ x, y ∈ H1

as A∗A = idH1 .

(2) =⇒ (3) Suppose A is onto and preserves the inner product. Then

‖Ax‖2 = 〈Ax,Ax〉 = 〈x, x〉 = ‖x‖2 .

So Ax = 0 if and only x = 0 . Hence A is one-to-one (injective).

So Ax = 0 ⇐⇒ x = 0. Hence, A is one to one. (3) =⇒ (4) From A being

a bijection, it is onto. The isometry property follows from preservation of

the inner product by

‖Ax‖2 = 〈Ax,Ax〉 = 〈x, x〉 = ‖x‖2 .

. (4) =⇒ (1) from the isometry assumption A∗A = idH1 , then AA
∗A = A

and since A is onto, then for each x ∈ H2 there exists y ∈ H1 such that

Ay = x. Now,

(AA∗A)y = Ay =⇒ (AA∗)Ay = Ay

(AA∗)x = x, ∀ x ∈ H2

So, we have AA∗ = idH1 , We could, if needed, extend these equivalences to

bijections between inner product spaces. �

Next we characterise normality.

Geometric characterization of normality

Lemma 2. An operator A ∈ B(H) is normal if and only if for for each

x ∈ H, ‖Ax‖ = ‖A∗x‖.
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Proof: We have, assuming that ‖Ax‖ = ‖A∗x‖, then

〈(AA∗ − A∗A)x, x〉 = 〈AA∗x− A∗Ax, x〉

= 〈AA∗x, x〉 − 〈A∗Ax, x〉

= 〈A∗x,A∗x〉 − 〈Ax,Ax〉

= ‖A∗x‖2 − ‖Ax‖2 = 0

By AA∗ − A∗A being Hermitian, we can deduce that AA∗ − A∗A = 0,

because it is quadratic form vanishes. Conversely, if AA∗−A∗A = 0 then we

can see this is true, which implies that ‖Ax‖2 = ‖A∗x‖2.
We write N (A) for the null space, N = A−1({0}) and R(A) for the

range R(A) = A(H).

Relationships between adjoints, null space and

range

Lemma 3. For A ∈ B(H)

1. N (A) = (R(A∗))⊥.

2. A closed subspace E is invariant under A, i.e. A(E) ⊂ E, if and only

if E⊥ is invariant under A∗.

Proof: (1) By 〈Ax, y〉 = 〈x,A∗y〉. Let Ax = 0, this implies that

〈Ax, y〉 = 0 =⇒ 〈x,A∗y〉 = 0 i.e. x ⊥ A∗y .

Thus, Ax = 0 is equivalent to x ∈ (R(A∗))⊥. So N (A) = (R(A∗))⊥.
(2) Assuming A(E) ⊂ E, then for v ∈ E⊥, y ∈ E

〈A∗v, y〉 = 〈v, Ay〉 = 0, ∀ y ∈ E

=⇒ ∀ v ∈ E⊥, A∗v ∈ E⊥ So, A∗(E⊥) ⊂ E⊥.

Conversely, if A∗(E⊥) ⊂ E⊥, then by E being a closed subspace E =

(E⊥)⊥ and A = (A∗)∗, so then switching A and A∗ in the preceding result

gives A(E) ⊂ E.

Next we want to characterise orthogonal projection.
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Characterization of orthogonal projection

Theorem 4. Let 0 6= P ∈ B(H) be a projection i.e. P 2 = P , then the

following are equivalent:

1. P is an orthogonal projection, so N (P ) ⊥ R(P ).

2. ‖P‖ = 1.

3. 〈Px, x〉 ≥ 0 ∀ x ∈ H.

4. P = P ∗.

5. P is normal.

Proof: We recall that P 2 = P , then H = R(P )
⊕
N (P ). So for each

x ∈ H, x = P (x) + (I −P )x as (I −P )x ∈ N (P ). Since P is bounded, both

subspaces are closed which is proved as follows: Let x be a limit point of

N (P ), then there is a sequence xn in space N (P ) such that xn −→ x. Then

for each y ∈ H

〈P (xn), y〉 = 〈xn, P (y)〉 −→ 〈x, P (y)〉 ,

=⇒ 〈x, P (y)〉 = 0 as P (xn) = 0. That is 〈P (x), y〉 = 0 ∀ y ∈ H. This

implies that P (x) = 0 i.e. x ∈ N (P ). Therefore, N (P ) is closed.

Next we prove that R(P ) is closed. Let x ∈ R(P ) and z ∈ N (P ), then there

exists y ∈ H such that P (y) = x. Now consider

〈x, z〉 = 〈P (y), z〉 = 〈y, P (z)〉 = 0 ,

=⇒ R(P ) ⊥ N (P ). Thus H can be expressed as a direct sum of R(P ) and
N (P ) and hence R(P ) = (N (P ))⊥. Thus R(P ) is closed.

(1) =⇒ (2) Suppose E = R(P ), then by the assumption H = E
⊕

E⊥,

with N (P ) = E⊥. Since P 6= O =⇒ E 6= {0}.
Thus there is x ∈ E with ‖x‖ = 1. Then, by P 2 = P and x ∈ R(P ), P (x) =
x. In other words, ‖Px‖ = ‖x‖ = 1. So ‖P‖ ≥ 1 because ‖P‖ = sup ‖Px‖

‖x‖ .

On the other hand, invoking Pythagoras we see, if x ∈ H, then x = y + z

with y ∈ E and z ∈ E⊥, then

‖Px‖2 = ‖y‖2

= ‖x‖2 − ‖z‖2

≤ ‖x‖2
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We see ‖P‖ ≤ 1 and conclude ‖P‖ = 1.

(2) =⇒ (1) Assume ‖P‖ = 1. let x ∈ N (P ), y ∈ R(P ), then for λ ∈ C

‖λy‖2 = |λ|2‖y‖2

= ‖P (x+ λy)‖2

≤ ‖x+ λy‖2

≤ ‖x‖2 + 2Re[ λ 〈x, y〉 ] + λ2‖y‖2

Subtracting |λ|2‖y‖2 from both side gives

‖x‖2 + 2Re[ λ 〈x, y〉 ] ≥ 0 ,

Now choosing λ = t〈x, y〉 gives for each t ∈ R, gives that

‖x‖2 + 2t|〈x, y〉|2 ≥ 0, ∀ t ∈ R

=⇒ |〈x, y〉| = 0, then we conclude 〈x, y〉 = 0.

So N (P ) ⊥ R(P ). Also we know that H = N (P )
⊕
R(P ),

so it is orthogonal decomposition when ‖P‖ = 1.

Thus, P is orthogonal projection.


