MATH 7320 Lecture Notes

Note-taker: Kumari Teena

September 13, 2022

Warm up: Given an isometry $V : \mathcal{H} \longrightarrow \mathcal{H}$, show that VV^* is an orthogonal projection.

Proof: Consider

$$(VV^*)^* = (V^*)^*V^* = VV^*$$
.

This implies that VV^* is Hermitian. Since V is an isometry, then by previous Lemma, we have

$$V^*V = id_{\mathcal{H}} ,$$

we see that,

$$(VV^*)^2 = VV^*VV^* = VV^*$$

 $\implies VV^*$ is a projection.

Now

$$\langle VV^*x, y \rangle = \langle V^*x, V*y \rangle = \langle x, VV^*y \rangle, \quad \forall \quad x, y \in \mathcal{H}$$

Thus, VV^* is an orthogonal projection.

Motivation: Characterize unitaries as "onto isometries "

Theorem 1. For a bounded linear map $A : \mathcal{H}_1 \longrightarrow \mathcal{H}_2$, the following are equivalent:

- 1. A is unitary.
- 2. A is onto and preserves the inner product, i.e. for $x, y \in \mathcal{H}$,

$$\langle Ax, Ay \rangle = \langle x, y \rangle$$
.

- 3. A is a bijection and preserves the inner product.
- 4. A is onto and an isometry.

Proof: (1) \implies (2) For each $x \in \mathcal{H}_2$, we know that $AA^*x = x$. So $A(A^*x) = x$ and $A^*x \in \mathcal{H}_1$. Hence A is surjective (onto). The inner product is invariant by

$$\langle Ax, Ay \rangle = \langle A^*Ax, y \rangle = \langle x, y \rangle, \quad \forall \quad x, y \in \mathcal{H}_1$$

as $A^*A = id_{\mathcal{H}_1}$.

 $(2) \implies (3)$ Suppose A is onto and preserves the inner product. Then

$$||Ax||^2 = \langle Ax, Ax \rangle = \langle x, x \rangle = ||x||^2 .$$

So Ax = 0 if and only x = 0. Hence A is one-to-one (injective). So $Ax = 0 \iff x = 0$. Hence, A is one to one. (3) \implies (4) From A being a bijection, it is onto. The isometry property follows from preservation of the inner product by

$$||Ax||^2 = \langle Ax, Ax \rangle = \langle x, x \rangle = ||x||^2.$$

. (4) \implies (1) from the isometry assumption $A^*A = id_{\mathcal{H}_1}$, then $AA^*A = A$ and since A is onto, then for each $x \in \mathcal{H}_2$ there exists $y \in \mathcal{H}_1$ such that Ay = x. Now,

$$(AA^*A)y = Ay \implies (AA^*)Ay = Ay$$
$$(AA^*)x = x, \ \forall \ x \in \mathcal{H}_2$$

So, we have $AA^* = id_{\mathcal{H}_1}$, We could, if needed, extend these equivalences to bijections between inner product spaces. \Box

Next we characterise **normality**.

Geometric characterization of normality

Lemma 2. An operator $A \in \mathcal{B}(\mathcal{H})$ is normal if and only if for for each $x \in \mathcal{H}, ||Ax|| = ||A^*x||.$

Proof: We have, assuming that $||Ax|| = ||A^*x||$, then

$$\langle (AA^* - A^*A)x, x \rangle = \langle AA^*x - A^*Ax, x \rangle$$
$$= \langle AA^*x, x \rangle - \langle A^*Ax, x \rangle$$
$$= \langle A^*x, A^*x \rangle - \langle Ax, Ax \rangle$$
$$= \|A^*x\|^2 - \|Ax\|^2 = 0$$

By $AA^* - A^*A$ being Hermitian, we can deduce that $AA^* - A^*A = 0$, because it is quadratic form vanishes. Conversely, if $AA^* - A^*A = 0$ then we can see this is true, which implies that $||Ax||^2 = ||A^*x||^2$.

We write $\mathcal{N}(A)$ for the **null space**, $\mathcal{N} = A^{-1}(\{0\})$ and $\mathcal{R}(A)$ for the **range** $\mathcal{R}(A) = A(\mathcal{H})$.

Relationships between adjoints, null space and range

Lemma 3. For $A \in \mathcal{B}(\mathcal{H})$

1.
$$\mathcal{N}(A) = (\mathcal{R}(A^*))^{\perp}$$
.

2. A closed subspace E is invariant under A, i.e. $A(E) \subset E$, if and only if E^{\perp} is invariant under A^* .

Proof: (1) By $\langle Ax, y \rangle = \langle x, A^*y \rangle$. Let Ax = 0, this implies that

$$\langle Ax, y \rangle = 0 \implies \langle x, A^*y \rangle = 0 \quad i.e. \quad x \perp A^*y \; .$$

Thus, Ax = 0 is equivalent to $x \in (\mathcal{R}(A^*))^{\perp}$. So $\mathcal{N}(A) = (\mathcal{R}(A^*))^{\perp}$. (2) Assuming $A(E) \subset E$, then for $v \in E^{\perp}$, $y \in E$

$$\langle A^*v, y \rangle = \langle v, Ay \rangle = 0, \ \forall \ y \in E$$

 $\implies \forall v \in E^{\perp}, A^*v \in E^{\perp} \text{ So, } A^*(E^{\perp}) \subset E^{\perp}.$

Conversely, if $A^*(E^{\perp}) \subset E^{\perp}$, then by E being a closed subspace $E = (E^{\perp})^{\perp}$ and $A = (A^*)^*$, so then switching A and A^* in the preceding result gives $A(E) \subset E$.

Next we want to characterise orthogonal projection.

Characterization of orthogonal projection

Theorem 4. Let $0 \neq P \in \mathcal{B}(\mathcal{H})$ be a projection i.e. $P^2 = P$, then the following are equivalent:

- 1. P is an orthogonal projection, so $\mathcal{N}(P) \perp \mathcal{R}(P)$.
- 2. ||P|| = 1.
- 3. $\langle Px, x \rangle \geq 0 \ \forall \ x \in \mathcal{H}.$
- 4. $P = P^*$.
- 5. P is normal.

Proof: We recall that $P^2 = P$, then $\mathcal{H} = \mathcal{R}(P) \bigoplus \mathcal{N}(P)$. So for each $x \in \mathcal{H}, x = P(x) + (I - P)x$ as $(I - P)x \in \mathcal{N}(P)$. Since P is bounded, both subspaces are closed which is proved as follows: Let x be a limit point of $\mathcal{N}(P)$, then there is a sequence x_n in space $\mathcal{N}(P)$ such that $x_n \longrightarrow x$. Then for each $y \in \mathcal{H}$

$$\langle P(x_n), y \rangle = \langle x_n, P(y) \rangle \longrightarrow \langle x, P(y) \rangle$$
,

 $\implies \langle x, P(y) \rangle = 0$ as $P(x_n) = 0$. That is $\langle P(x), y \rangle = 0 \forall y \in \mathcal{H}$. This implies that P(x) = 0 i.e. $x \in \mathcal{N}(P)$. Therefore, $\mathcal{N}(P)$ is closed.

Next we prove that $\mathcal{R}(P)$ is closed. Let $x \in \mathcal{R}(P)$ and $z \in \mathcal{N}(P)$, then there exists $y \in \mathcal{H}$ such that P(y) = x. Now consider

$$\langle x, z \rangle = \langle P(y), z \rangle = \langle y, P(z) \rangle = 0$$
,

 $\implies \mathcal{R}(P) \perp \mathcal{N}(P)$. Thus \mathcal{H} can be expressed as a direct sum of $\mathcal{R}(P)$ and $\mathcal{N}(P)$ and hence $\mathcal{R}(P) = (\mathcal{N}(P))^{\perp}$. Thus $\mathcal{R}(P)$ is closed.

(1) \implies (2) Suppose $E = \mathcal{R}(P)$, then by the assumption $\mathcal{H} = E \bigoplus E^{\perp}$, with $\mathcal{N}(P) = E^{\perp}$. Since $P \neq O \implies E \neq \{0\}$. Thus there is $x \in E$ with ||x|| = 1. Then, by $P^2 = P$ and $x \in \mathcal{R}(P)$, P(x) = x. In other words, ||Px|| = ||x|| = 1. So $||P|| \ge 1$ because $||P|| = \sup \frac{||Px||}{||x||}$. On the other hand, invoking Pythagoras we see, if $x \in \mathcal{H}$, then x = y + zwith $y \in E$ and $z \in E^{\perp}$, then

$$||Px||^{2} = ||y||^{2}$$

= $||x||^{2} - ||z||^{2}$
 $\leq ||x||^{2}$

We see $||P|| \le 1$ and conclude ||P|| = 1.

(2) \implies (1) Assume ||P|| = 1. let $x \in \mathcal{N}(P), y \in \mathcal{R}(P)$, then for $\lambda \in \mathbb{C}$

$$\begin{aligned} \|\lambda y\|^2 &= |\lambda|^2 \|y\|^2 \\ &= \|P(x+\lambda y)\|^2 \\ &\leq \|x+\lambda y\|^2 \\ &\leq \|x\|^2 + 2Re[\ \overline{\lambda} \langle x, y \rangle \] + \lambda^2 \|y\|^2 \end{aligned}$$

Subtracting $|\lambda|^2 \|y\|^2$ from both side gives

$$||x||^2 + 2Re[\overline{\lambda}\langle x, y\rangle] \ge 0 ,$$

Now choosing $\lambda = t \langle x, y \rangle$ gives for each $t \in \mathbb{R}$, gives that

$$||x||^2 + 2t |\langle x, y \rangle|^2 \ge 0, \quad \forall \quad t \in \mathbb{R}$$

 $\implies |\langle x, y \rangle| = 0, \text{ then we conclude } \langle x, y \rangle = 0.$ So $\mathcal{N}(P) \perp \mathcal{R}(P)$. Also we know that $\mathcal{H} = \mathcal{N}(P) \bigoplus \mathcal{R}(P),$ so it is orthogonal decomposition when ||P|| = 1.Thus, P is orthogonal projection.