MATH 7320 Lecture Notes

Note-taker: Kumari Teena

September 13, 2022

Warm up: Given an isometry $V: \mathcal{H} \longrightarrow \mathcal{H}$, show that $V V^{*}$ is an orthogonal projection.
Proof: Consider

$$
\left(V V^{*}\right)^{*}=\left(V^{*}\right)^{*} V^{*}=V V^{*} .
$$

This implies that $V V^{*}$ is Hermitian. Since V is an isometry, then by previous Lemma, we have

$$
V^{*} V=i d_{\mathcal{H}},
$$

we see that,

$$
\left(V V^{*}\right)^{2}=V V^{*} V V^{*}=V V^{*}
$$

$\Longrightarrow V V^{*}$ is a projection.
Now

$$
\left\langle V V^{*} x, y\right\rangle=\left\langle V^{*} x, V * y\right\rangle=\left\langle x, V V^{*} y\right\rangle, \quad \forall x, y \in \mathcal{H} .
$$

Thus, $V V^{*}$ is an orthogonal projection.

Motivation: Characterize unitaries as "onto isometries "

Theorem 1. For a bounded linear map $A: \mathcal{H}_{1} \longrightarrow \mathcal{H}_{2}$, the following are equivalent:

1. A is unitary.
2. A is onto and preserves the inner product, i.e. for $x, y \in \mathcal{H}$,

$$
\langle A x, A y\rangle=\langle x, y\rangle .
$$

3. A is a bijection and preserves the inner product.
4. A is onto and an isometry.

Proof: (1) \Longrightarrow (2) For each $x \in \mathcal{H}_{2}$, we know that $A A^{*} x=x$. So $A\left(A^{*} x\right)=x$ and $A^{*} x \in \mathcal{H}_{1}$. Hence A is surjective (onto).
The inner product is invariant by

$$
\langle A x, A y\rangle=\left\langle A^{*} A x, y\right\rangle=\langle x, y\rangle, \quad \forall x, y \in \mathcal{H}_{1}
$$

as $A^{*} A=i d_{\mathcal{H}_{1}}$.
$(2) \Longrightarrow(3)$ Suppose A is onto and preserves the inner product. Then

$$
\|A x\|^{2}=\langle A x, A x\rangle=\langle x, x\rangle=\|x\|^{2} .
$$

So $A x=0$ if and only $x=0$. Hence A is one-to-one (injective).
So $A x=0 \Longleftrightarrow x=0$. Hence, A is one to one. (3) \Longrightarrow (4) From A being a bijection, it is onto. The isometry property follows from preservation of the inner product by

$$
\|A x\|^{2}=\langle A x, A x\rangle=\langle x, x\rangle=\|x\|^{2}
$$

(4) \Longrightarrow (1) from the isometry assumption $A^{*} A=i d_{\mathcal{H}_{1}}$, then $A A^{*} A=A$ and since A is onto, then for each $x \in \mathcal{H}_{2}$ there exists $y \in \mathcal{H}_{1}$ such that $A y=x$. Now,

$$
\begin{aligned}
\left(A A^{*} A\right) y & =A y \quad \Longrightarrow \quad\left(A A^{*}\right) A y=A y \\
\left(A A^{*}\right) x & =x, \quad \forall x \in \mathcal{H}_{2}
\end{aligned}
$$

So, we have $A A^{*}=i d_{\mathcal{H}_{1}}$, We could, if needed, extend these equivalences to bijections between inner product spaces.

Next we characterise normality.

Geometric characterization of normality

Lemma 2. An operator $A \in \mathcal{B}(\mathcal{H})$ is normal if and only if for for each $x \in \mathcal{H},\|A x\|=\left\|A^{*} x\right\|$.

Proof: We have, assuming that $\|A x\|=\left\|A^{*} x\right\|$, then

$$
\begin{aligned}
\left\langle\left(A A^{*}-A^{*} A\right) x, x\right\rangle & =\left\langle A A^{*} x-A^{*} A x, x\right\rangle \\
& =\left\langle A A^{*} x, x\right\rangle-\left\langle A^{*} A x, x\right\rangle \\
& =\left\langle A^{*} x, A^{*} x\right\rangle-\langle A x, A x\rangle \\
& =\left\|A^{*} x\right\|^{2}-\|A x\|^{2}=0
\end{aligned}
$$

By $A A^{*}-A^{*} A$ being Hermitian, we can deduce that $A A^{*}-A^{*} A=0$, because it is quadratic form vanishes. Conversely, if $A A^{*}-A^{*} A=0$ then we can see this is true, which implies that $\|A x\|^{2}=\left\|A^{*} x\right\|^{2}$.

We write $\mathcal{N}(A)$ for the null space, $\mathcal{N}=A^{-1}(\{0\})$ and $\mathcal{R}(A)$ for the range $\mathcal{R}(A)=A(\mathcal{H})$.

Relationships between adjoints, null space and range

Lemma 3. For $A \in \mathcal{B}(\mathcal{H})$

1. $\mathcal{N}(A)=\left(\mathcal{R}\left(A^{*}\right)\right)^{\perp}$.
2. A closed subspace E is invariant under A, i.e. $A(E) \subset E$, if and only if E^{\perp} is invariant under A^{*}.

Proof: (1) By $\langle A x, y\rangle=\left\langle x, A^{*} y\right\rangle$. Let $A x=0$, this implies that

$$
\langle A x, y\rangle=0 \Longrightarrow\left\langle x, A^{*} y\right\rangle=0 \text { i.e. } x \perp A^{*} y .
$$

Thus, $A x=0$ is equivalent to $x \in\left(\mathcal{R}\left(A^{*}\right)\right)^{\perp}$. So $\mathcal{N}(A)=\left(\mathcal{R}\left(A^{*}\right)\right)^{\perp}$.
(2) Assuming $A(E) \subset E$, then for $v \in E^{\perp}, y \in E$

$$
\left\langle A^{*} v, y\right\rangle=\langle v, A y\rangle=0, \forall y \in E
$$

$\Longrightarrow \forall v \in E^{\perp}, A^{*} v \in E^{\perp}$ So, $A^{*}\left(E^{\perp}\right) \subset E^{\perp}$.
Conversely, if $A^{*}\left(E^{\perp}\right) \subset E^{\perp}$, then by E being a closed subspace $E=$ $\left(E^{\perp}\right)^{\perp}$ and $A=\left(A^{*}\right)^{*}$, so then switching A and A^{*} in the preceding result gives $A(E) \subset E$.

Next we want to characterise orthogonal projection.

Characterization of orthogonal projection

Theorem 4. Let $0 \neq P \in \mathcal{B}(\mathcal{H})$ be a projection i.e. $P^{2}=P$, then the following are equivalent:

1. P is an orthogonal projection, so $\mathcal{N}(P) \perp \mathcal{R}(P)$.
2. $\|P\|=1$.
3. $\langle P x, x\rangle \geq 0 \forall x \in \mathcal{H}$.
4. $P=P^{*}$.
5. P is normal.

Proof: We recall that $P^{2}=P$, then $\mathcal{H}=\mathcal{R}(P) \bigoplus \mathcal{N}(P)$. So for each $x \in \mathcal{H}, x=P(x)+(I-P) x$ as $(I-P) x \in \mathcal{N}(P)$. Since P is bounded, both subspaces are closed which is proved as follows: Let x be a limit point of $\mathcal{N}(P)$, then there is a sequence x_{n} in space $\mathcal{N}(P)$ such that $x_{n} \longrightarrow x$. Then for each $y \in \mathcal{H}$

$$
\left\langle P\left(x_{n}\right), y\right\rangle=\left\langle x_{n}, P(y)\right\rangle \longrightarrow\langle x, P(y)\rangle,
$$

$\Longrightarrow\langle x, P(y)\rangle=0$ as $P\left(x_{n}\right)=0$. That is $\langle P(x), y\rangle=0 \forall y \in \mathcal{H}$. This implies that $P(x)=0$ i.e. $x \in \mathcal{N}(P)$. Therefore, $\mathcal{N}(P)$ is closed.
Next we prove that $\mathcal{R}(P)$ is closed. Let $x \in \mathcal{R}(P)$ and $z \in \mathcal{N}(P)$, then there exists $y \in \mathcal{H}$ such that $P(y)=x$. Now consider

$$
\langle x, z\rangle=\langle P(y), z\rangle=\langle y, P(z)\rangle=0
$$

$\Longrightarrow \mathcal{R}(P) \perp \mathcal{N}(P)$. Thus \mathcal{H} can be expressed as a direct sum of $\mathcal{R}(P)$ and $\mathcal{N}(P)$ and hence $\mathcal{R}(P)=(\mathcal{N}(P))^{\perp}$. Thus $\mathcal{R}(P)$ is closed.
(1) \Longrightarrow (2) Suppose $E=\mathcal{R}(P)$, then by the assumption $\mathcal{H}=E \bigoplus E^{\perp}$, with $\mathcal{N}(P)=E^{\perp}$. Since $P \neq O \Longrightarrow E \neq\{0\}$.
Thus there is $x \in E$ with $\|x\|=1$. Then, by $P^{2}=P$ and $x \in \mathcal{R}(P), P(x)=$ x. In other words, $\|P x\|=\|x\|=1$. So $\|P\| \geq 1$ because $\|P\|=\sup \frac{\|P x\|}{\|x\|}$. On the other hand, invoking Pythagoras we see, if $x \in \mathcal{H}$, then $x=y+z$ with $y \in E$ and $z \in E^{\perp}$, then

$$
\begin{aligned}
\|P x\|^{2} & =\|y\|^{2} \\
& =\|x\|^{2}-\|z\|^{2} \\
& \leq\|x\|^{2}
\end{aligned}
$$

We see $\|P\| \leq 1$ and conclude $\|P\|=1$.
$(2) \Longrightarrow$ (1) Assume $\|P\|=1$. let $x \in \mathcal{N}(P), y \in \mathcal{R}(P)$, then for $\lambda \in \mathbb{C}$

$$
\begin{aligned}
\|\lambda y\|^{2} & =|\lambda|^{2}\|y\|^{2} \\
& =\|P(x+\lambda y)\|^{2} \\
& \leq\|x+\lambda y\|^{2} \\
& \leq\|x\|^{2}+2 \operatorname{Re}[\bar{\lambda}\langle x, y\rangle]+\lambda^{2}\|y\|^{2}
\end{aligned}
$$

Subtracting $|\lambda|^{2}\|y\|^{2}$ from both side gives

$$
\|x\|^{2}+2 \operatorname{Re}[\bar{\lambda}\langle x, y\rangle] \geq 0
$$

Now choosing $\lambda=t\langle x, y\rangle$ gives for each $t \in \mathbb{R}$, gives that

$$
\|x\|^{2}+2 t|\langle x, y\rangle|^{2} \geq 0, \quad \forall t \in \mathbb{R}
$$

$\Longrightarrow|\langle x, y\rangle|=0$, then we conclude $\langle x, y\rangle=0$.
So $\quad \mathcal{N}(P) \perp \mathcal{R}(P)$. Also we know that $\mathcal{H}=\mathcal{N}(P) \bigoplus \mathcal{R}(P)$,
so it is orthogonal decomposition when $\|P\|=1$.
Thus, P is orthogonal projection.

