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Warm up: Given an isometry V' : H — H, show that V'V* is an orthogonal
projection.
Proof: Consider

VvV =V )y'v:=Vvv*.
This implies that V'V* is Hermitian. Since V' is an isometry, then by previous
Lemma, we have

V*V =idy

we see that,

(VV?2=VV*VV*=VV*
—> VV™*is a projection.
Now

(VV*z,yy = (V*x, Vxy) = (2, VV™y), ¥V z,y€H .

Thus, VV* is an orthogonal projection.

Motivation: Characterize unitaries as ”onto

isometries ”’

Theorem 1. For a bounded linear map A : Hi — Ha, the following are

equivalent:

1. A is unitary.
2. A is onto and preserves the inner product, i.e. for v,y € H,
(Az, Ay) = (z,y) -
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3. A is a bijection and preserves the inner product.
4. A is onto and an isometry.

Proof: (1) = (2) For each z € Hy, we know that AA*x = z. So
A(A*z) = x and A*z € H,. Hence A is surjective (onto).

The inner product is invariant by
<A$,Ay> = <A*A23,y> = <x>y>7 v r,y € Hl

as A*A =idy, .
(2) = (3) Suppose A is onto and preserves the inner product. Then

|Az|* = (A, Az) = (2, 2) = ||z .

So Az =0 if and only x = 0 . Hence A is one-to-one (injective).
So Ar =0 <= x =0. Hence, A is one to one. (3) = (4) From A being
a bijection, it is onto. The isometry property follows from preservation of

the inner product by
|Az||* = (Az, Azx) = (z,2) = [|=|* .

. (4) = (1) from the isometry assumption A*A = idy,, then AA*A = A
and since A is onto, then for each x € H, there exists y € H; such that
Ay = z. Now,

(AA*A)y = Ay = (AA")Ay= Ay
(AAY = 2, ¥V z€Hy

So, we have AA* = idy,, We could, if needed, extend these equivalences to
bijections between inner product spaces. [

Next we characterise normality.

Geometric characterization of normality

Lemma 2. An operator A € B(H) is normal if and only if for for each
e, |[Az]| = [[Az].



Proof: We have, assuming that ||Az|| = ||A*z||, then

(AA* — A" A)x,x) = (AA™z — A" Ax, x)
= (AAx,x) — (A" Az, )
= (A*z, A%x) — (Az, Ax)
= [|[A"||* — || Az]* =0

By AA* — A*A being Hermitian, we can deduce that AA* — A*A = 0,
because it is quadratic form vanishes. Conversely, if AA* — A*A = 0 then we
can see this is true, which implies that ||Ax||? = ||A*z]?.

We write N(A) for the null space, N' = A~*({0}) and R(A) for the
range R(A) = A(H).

Relationships between adjoints, null space and
range
Lemma 3. For A € B(H)

1. N(A) = (R(A*))*.

2. A closed subspace E is invariant under A, i.e. A(F) C E, if and only

if B+ is invariant under A*.
Proof: (1) By (Az,y) = (x, A*y). Let Ax = 0, this implies that
(Az,y) =0 = (x,A"y)=0 de. x L A%y

Thus, Az = 0 is equivalent to x € (R(A*))*. So N(A4) = (R(A*))*.
(2) Assuming A(E) C E, then forv e E+, y e E

(A", y) = (v,Ay) =0, Vy e E

— VueEL, AWwe EL So, AM(EY) C B,

Conversely, if A*(E+) Cc E+, then by E being a closed subspace £ =
(E+)t and A = (A*)*, so then switching A and A* in the preceding result
gives A(F) C E. O

Next we want to characterise orthogonal projection.



Characterization of orthogonal projection

Theorem 4. Let 0 # P € B(H) be a projection i.e. P? = P, then the

following are equivalent:

1. P is an orthogonal projection, so N'(P) L R(P).

2. |P|| =1.

3. (Pz,x) >0V x eH.

4. P = P*.

5. P is normal.

Proof: We recall that P? = P, then H = R(P) @ N(P). So for each
x€H,z=Plx)+ (I —P)xas (I — P)xr € N(P). Since P is bounded, both
subspaces are closed which is proved as follows: Let z be a limit point of

N (P), then there is a sequence x,, in space N'(P) such that z,, — x. Then
for each y € H

(P(2n),y) = (&, P(y)) — (2, P(y)) ,
= (x,P(y)) = 0as P(x,) = 0. That is (P(z),y) =0V y € H. This
implies that P(z) =0 ie. x € N(P). Therefore, N'(P) is closed.
Next we prove that R(P) is closed. Let x € R(P) and z € N(P), then there
exists y € H such that P(y) = x. Now consider

(2, 2) = (P(y), 2) = {y, P(2)) = 0,
—> R(P) L N(P). Thus H can be expressed as a direct sum of R(P) and
N(P) and hence R(P) = (N (P))*. Thus R(P) is closed.

(1) = (2) Suppose E = R(P), then by the assumption H = E @ E+,
with A'(P) = E+. Since P # O = FE # {0}.
Thus there is x € F with ||z| = 1. Then, by P? = P and z € R(P), P(z) =
x. In other words, ||Pz| = ||z|| = 1. So ||P|| > 1 because || P| = sup Hﬁﬂ”.
On the other hand, invoking Pythagoras we see, if + € H, then x = y + 2
with y € E and z € E*+, then

1Pz = [|y]*
= [ll* = [|=I

< lz?



We see ||P|| < 1 and conclude ||P| = 1.
(2) = (1) Assume ||P|| = 1. let z € N(P), y € R(P), then for A € C
IAyl* = AP ly|I*
= [[P(z+ M)l
<l + Myl?
< |l2[I* + 2Re[ Az, y) ]+ A*ly]l*

Subtracting |A|?||y||? from both side gives
Iz + 2Re[ Az, y) ] 20,
Now choosing A = t(z,y) gives for each ¢t € R, gives that
|z||® + 2t|(z,9)|* >0, ¥V t€R

— [{x,y)| = 0, then we conclude (z,y) = 0.
So  N(P) L R(P). Also we know that H = N'(P) @ R(P),
so it is orthogonal decomposition when || P| = 1.

Thus, P is orthogonal projection.



