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Last Time

• Every bounded linear operator can be identified by it’s quadratic form.

• Equivalent conditions of normal operators

• Equivalent conditions of P being an orthogonal projection.

Warm up:

2.51 Question. If H has finite dimension, A : H → H satisfies A∗A = idH, then A is unitary.

Since A∗A = idH, we have A∗ is surjective. Hence using the previous lemma we have
N (A) = R(A∗)⊥ = 0. So A is one-to-one and counting dimensions, by Rank-Nullity, A is onto.
Also A being an isometry and surjective is an unitary.

Unfortunately, A might not be surjective if H has infinite dimensions.

3 Orthogonal Projections

We begin with the following theorem for equivalent conditions of Orthogonal projections.

3.1 Theorem. Let 0 ̸= P ∈ B(H) be a projection. i.e., P2 = P. Then the following are
equivalent:

(1) P is an orthogonal projection, so N (P) ⊥ [R(P).

(2) ∥P∥ = 1

(3) ⟨Px, x⟩ ≥ 0 for each x ∈ H.

(4) P is hermition. That is, P∗ = P.

(5) P is normal.
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Proof. We have already shown that (1) =⇒ (2). Now to show (2) =⇒ (1).
Let x ∈ N (P), y ∈ R(P), then for λ ∈ C

∥λy∥2 = |λ|2∥y∥2 = ∥P(x+ λy∥
≤ ∥x+ λy∥2

= ∥x∥2 + 2Re[λ⟨x, y⟩] + |λ|2∥y∥2

Subtracting ∥λy∥2 from both sides, we get

∥x∥2 + 2Re[λ⟨x, y⟩] ≥ 0

for any λ ∈ C
Setting λ = t⟨x, y⟩ gives for each t ∈ R, ∥x∥2+ 2t|⟨x.y⟩|2 ≥ 0. So conclude, for this to hold

for each t, ⟨x, y⟩ = 0.
Hence, N (P) ⊥ R(P) and also since N (P) and R(P) are closed subspaces of H, so H =
N (P)

⊕
R(P), so P is an orthogonal projection..

So we have show (1) ⇐⇒ (2).

Next, we prove (1) =⇒ (3), this follows from

⟨Px, x⟩ = ⟨Px, x− px+ px⟩ = ⟨Px, (I− P)x+ Px⟩
= ⟨Px, Px⟩
= ∥Px∥2 ≥ 0

(3) =⇒ (4), Since the quadratic form of P is non-negative, we have x 7→ ⟨Px, x⟩ ∈ R for each
x ∈ H, P is Hermition by our theorem on Sesquilinear/ Quadratic forms(Theorem 1.48(6)).
(1) =⇒ (5) We recall P = P∗ implies PP∗ = P.P = P∗P. So P is normal.

It is left to show (5) =⇒ (1). Let P be a projection and P is normal. Then for each x ∈ H,
by Theorem. , we have

∥Px∥ = ∥P∗x∥

Hence, Px = 0 ⇐⇒ P∗x = 0, and we get N (P) = N (P∗).
By orthogonality relation, N (P∗) = (R((P∗)∗))⊥ = [R(P)]⊥

3.2 Examples. We consider an example of an orthogonal projection that maps onto the range of
an isometry.
Let S : l2 → l2, defined by (Sx)j = xj+1.
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Then for x, y ∈ l2 consider,

⟨x, S∗y⟩ = ⟨Sx, y⟩ =
∞∑
j=1

(Sx)j(y)j =

∞∑
j=1

(x)j+1(y)j

= ⟨(x1, x2, · · · ), (0, y1, y2, · · · )⟩
= ⟨x, S∗y⟩

which is true for any x, y ∈ H. Hence we have, (S∗x)j =

{
0 if j = 1

xj−1 if j ≥ 2
,

Because of this, we see SS∗ = idH. Hence S∗ is an isometrty, and (S∗x)j =

{
0 if j = 1

xj if j ≥ 2
projects orthogonally onto the range of S∗. Also, since SS∗ ̸= S∗S and hence S not normal.
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4 Spectral Theory

Warm up: The usual route to spectrum is given by the resolvent of the bounded linear operator
A. Consider the operator Tz : A − zidH and ask if this is bounded and invertible. Then we call
Rz = (A− zidH)

−1 the resolvent of A which is usually the central discussion to learn about the
spectrum.

However, we are going to follow a different route here.
The main goal here is to understand the behavior of normal operators specifically unitary and
hermition ones. Representation theory offers a good framework for generating insights.

4.1 Question. What is a represenation?

A represenation is a map from some structured set to operators on a hilbert space.

We introduce a natural, minimal structure.

4.2 Definition. A pair (S, ∗) of a semigroup with an involutive anti-automorphism s → s∗ is
called involutive semi-group.

• The anti-automorphism gives (st)∗ = t∗s∗, reverses the order of compositions/multiplication.

• If 1 is a unit, then 1∗ = (1.1)∗ = 1∗1∗ =⇒ 1 = 1∗ (since 1 being a unit is invertible,
hence 1∗ = 1−1 =⇒ 1∗ is invertible. Since we have 1∗ = 1∗1∗, so right multiplying with
1∗−1, we get 1 = 1∗.1∗−1 = 1∗.1∗.1∗−1 = 1∗.1 = 1∗).

4.3 Definition. Elements in Sh = s : s = s∗ are called hermition and Su = s : ss∗ = s∗s = 1

are called unitaries. The set Su along with ∗ forms a group, called the unitary group.

4.4 Examples. 1. If S is an abelian semigroup, then (S, ids) is a involutive semigroups.

2. If G is a group, and we let g∗ = g−1(as (gh)−1 = h−1g−1, then (G, ∗) is an involutive
group.

3. B(H) with A → A∗ is an involutive semigroup. And B(H))u is the set of all unitaries.

4. The multiplicative semi-group C is an involutive semi-group with z∗ = z. This is B(C1).

5. If X is a set, then C∗ is an involutive semigroup(under pointwise multiplication) with
f∗(x) = f(x) and (fg)(x) = f(x)g(x).
A function f is hermition if it is real valued(since f is hermition ⇐⇒ f∗ = f ⇐⇒ f(x) =
f(x)).
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