Lecture Notes from September 15, 2022

taken by Dipanwita Bose

Last Time

- Every bounded linear operator can be identified by it's quadratic form.
- Equivalent conditions of normal operators
- Equivalent conditions of P being an orthogonal projection.

Warm up:

2.51 Question. If \mathcal{H} has finite dimension, $A: \mathcal{H} \rightarrow \mathcal{H}$ satisfies $A^{*} A=i d_{\mathcal{H}}$, then A is unitary.

Since $A^{*} A=i d_{\mathcal{H}}$, we have A^{*} is surjective. Hence using the previous lemma we have $\mathcal{N}(A)=\mathcal{R}\left(A^{*}\right)^{\perp}=0$. So A is one-to-one and counting dimensions, by Rank-Nullity, A is onto. Also A being an isometry and surjective is an unitary.

Unfortunately, \mathcal{A} might not be surjective if \mathcal{H} has infinite dimensions.

3 Orthogonal Projections

We begin with the following theorem for equivalent conditions of Orthogonal projections.
3.1 Theorem. Let $0 \neq \mathrm{P} \in \mathcal{B}(\mathcal{H})$ be a projection. i.e., $\mathrm{P}^{2}=\mathrm{P}$. Then the following are equivalent:
(1) P is an orthogonal projection, so $\mathcal{N}(\mathrm{P}) \perp[\mathcal{R}(\mathrm{P})$.
(2) $\|P\|=1$
(3) $\langle P x, x\rangle \geq 0$ for each $x \in \mathcal{H}$.
(4) P is hermition. That is, $\mathrm{P}^{*}=\mathrm{P}$.
(5) P is normal.

Proof. We have already shown that $(1) \Longrightarrow(2)$. Now to show $(2) \Longrightarrow(1)$.
Let $x \in \mathcal{N}(P), y \in \mathcal{R}(P)$, then for $\lambda \in \mathbb{C}$

$$
\begin{aligned}
\|\lambda y\|^{2}=|\lambda|^{2}\|y\|^{2} & =\| P(x+\lambda y \| \\
& \leq\|x+\lambda y\|^{2} \\
& =\|x\|^{2}+2 \operatorname{Re}[\bar{\lambda}\langle x, y\rangle]+|\lambda|^{2}\|y\|^{2}
\end{aligned}
$$

Subtracting $\|\lambda y\|^{2}$ from both sides, we get

$$
\|x\|^{2}+2 \operatorname{Re}[\bar{\lambda}\langle x, y\rangle] \geq 0
$$

for any $\lambda \in \mathbb{C}$
Setting $\lambda=t\langle x, y\rangle$ gives for each $t \in \mathbb{R},\|x\|^{2}+2 t|\langle x . y\rangle|^{2} \geq 0$. So conclude, for this to hold for each $t,\langle x, y\rangle=0$.
Hence, $\mathcal{N}(\mathrm{P}) \perp \mathcal{R}(\mathrm{P})$ and also since $\mathcal{N}(\mathrm{P})$ and $\mathcal{R}(\mathrm{P})$ are closed subspaces of \mathcal{H}, so $\mathcal{H}=$ $\mathcal{N}(\mathrm{P}) \bigoplus \mathcal{R}(\mathrm{P})$, so P is an orthogonal projection..
So we have show $(1) \Longleftrightarrow(2)$.
Next, we prove $(1) \Longrightarrow(3)$, this follows from

$$
\begin{aligned}
\langle\mathrm{P} x, \mathrm{x}\rangle=\langle\mathrm{P} x, x-\mathrm{px}+\mathrm{px}\rangle & =\langle\mathrm{P} x,(\mathrm{I}-\mathrm{P}) x+\mathrm{P} x\rangle \\
& =\langle\mathrm{P} x, \mathrm{P} x\rangle \\
& =\|\mathrm{P} x\|^{2} \geq 0
\end{aligned}
$$

(3) \Longrightarrow (4), Since the quadratic form of P is non-negative, we have $x \mapsto\langle P x, x\rangle \in \mathbb{R}$ for each $x \in \mathcal{H}, P$ is Hermition by our theorem on Sesquilinear/ Quadratic forms(Theorem 1.48(6)).
$(1) \Longrightarrow(5)$ We recall $P=P^{*}$ implies $P^{*}=P . P=P^{*} P$. So P is normal.
It is left to show $(5) \Longrightarrow(1)$. Let P be a projection and P is normal. Then for each $x \in \mathcal{H}$, by Theorem., we have

$$
\|\mathrm{Px}\|=\left\|\mathrm{P}^{*} \mathrm{x}\right\|
$$

Hence, $\mathrm{P} x=0 \Longleftrightarrow \mathrm{P}^{*} x=0$, and we get $\mathcal{N}(\mathrm{P})=\mathcal{N}\left(\mathrm{P}^{*}\right)$.
By orthogonality relation, $\mathcal{N}\left(\mathrm{P}^{*}\right)=\left(\mathcal{R}\left(\left(\mathrm{P}^{*}\right)^{*}\right)\right)^{\perp}=[\mathcal{R}(\mathrm{P})]^{\perp}$
3.2 Examples. We consider an example of an orthogonal projection that maps onto the range of an isometry.
Let $S: l^{2} \rightarrow l^{2}$, defined by $(S x)_{j}=x_{j+1}$.

Then for $x, y \in l^{2}$ consider,

$$
\begin{aligned}
\left\langle x, S^{*} y\right\rangle=\langle S x, y\rangle=\sum_{j=1}^{\infty}(S x)_{j} \overline{(y)_{j}} & =\sum_{j=1}^{\infty}(x)_{j+1} \overline{(y)_{j}} \\
& =\left\langle\left(x_{1}, x_{2}, \cdots\right),\left(0, y_{1}, y_{2}, \cdots\right)\right\rangle \\
& =\left\langle x, S^{*} y\right\rangle
\end{aligned}
$$

which is true for any $x, y \in \mathcal{H}$. Hence we have, $\left(S^{*} x\right)_{j}=\left\{\begin{array}{ll}0 & \text { if } j=1 \\ x_{j-1} & \text { if } j \geq 2\end{array}\right.$, Because of this, we see $S S^{*}=i d_{\mathcal{H}}$. Hence S^{*} is an isometrty, and $\left(S^{*} x\right)_{j}= \begin{cases}0 & \text { if } j=1 \\ x_{j} & \text { if } j \geq 2\end{cases}$ projects orthogonally onto the range of S^{*}. Also, since $S^{*} \neq S^{*} S$ and hence S not normal.

4 Spectral Theory

Warm up: The usual route to spectrum is given by the resolvent of the bounded linear operator A. Consider the operator $T_{z}: A-z i d_{\mathcal{H}}$ and ask if this is bounded and invertible. Then we call $R_{z}=\left(A-z i d_{\mathcal{H}}\right)^{-1}$ the resolvent of A which is usually the central discussion to learn about the spectrum.

However, we are going to follow a different route here.
The main goal here is to understand the behavior of normal operators specifically unitary and hermition ones. Representation theory offers a good framework for generating insights.

4.1 Question. What is a represenation?

A represenation is a map from some structured set to operators on a hilbert space.
We introduce a natural, minimal structure.
4.2 Definition. A pair $(S, *)$ of a semigroup with an involutive anti-automorphism $s \rightarrow s^{*}$ is called involutive semi-group.

- The anti-automorphism gives $(s t)^{*}=\mathrm{t}^{*} \mathrm{~s}^{*}$, reverses the order of compositions/multiplication.
- If 1 is a unit, then $1^{*}=(1.1)^{*}=1^{*} 1^{*} \Longrightarrow 1=1^{*}$ (since 1 being a unit is invertible, hence $1^{*}=1^{-1} \Longrightarrow 1^{*}$ is invertible. Since we have $1^{*}=1^{*} 1^{*}$, so right multiplying with 1^{*-1}, we get $1=1^{*} .1^{*-1}=1^{*} .1^{*} .1^{*-1}=1^{*} .1=1^{*}$).
4.3 Definition. Elements in $S_{h}=s: s=s^{*}$ are called hermition and $S_{u}=s: s s^{*}=s^{*} s=1$ are called unitaries. The set S_{u} along with $*$ forms a group, called the unitary group.
4.4 Examples. 1. If S is an abelian semigroup, then $\left(S, i d_{s}\right)$ is a involutive semigroups.

2. If G is a group, and we let $g *=g^{-1}\left(\mathrm{as}(\mathrm{gh})^{-1}=\mathrm{h}^{-1} \mathrm{~g}^{-1}\right.$, then $(\mathrm{G}, *)$ is an involutive group.
3. $\mathcal{B}(\mathcal{H})$ with $A \rightarrow A^{*}$ is an involutive semigroup. And $\left.\mathcal{B}(\mathcal{H})\right)_{\mathfrak{u}}$ is the set of all unitaries.
4. The multiplicative semi-group \mathbb{C} is an involutive semi-group with $z^{*}=\bar{z}$. This is $\mathcal{B}\left(\mathbb{C}^{1}\right)$.
5. If X is a set, then \mathbb{C}^{*} is an involutive semigroup(under pointwise multiplication) with $f^{*}(x)=\overline{f(x)}$ and $(f g)(x)=f(x) g(x)$.
A function f is hermition if it is real valued(since f is hermition $\Longleftrightarrow f^{*}=f \Longleftrightarrow \overline{f(x)}=$ $f(x)$).
