
Lecture Notes from September 15, 2022
taken by Tanvi Telang

Last time

• Characterization of unitaries

• Characterization of isometries (unitaries + a condition)

• Geometric characterization of normal operators

• Analogue of rank-nullity for A ∈ B(H)

• Characterization of orthogonal projections (proof in today’s class)

Warm up:

1.47 Question. If H is a finite-dimensional Hilbert space and A : H → H a linear map satisfying
A∗A = idH. Then A is unitary.

We will see that A is onto, then (onto + isometry) =⇒ unitary. A∗ is onto since A∗A = idH
so given any x ∈ H, A∗Ax = x hence there exists y = Ax ∈ H such that A∗y = x. We also
know that N (A) = R(A)⊥ = {0} and so A is one-one. Next, using Rank-Nullity we have that
dimH = dimN (A) + dimR(A) = dimR(A), H = R(A) and so A is onto and hence A is
unitary.

We continue the proof of the theorem from last time that characterized orthogonal projections.
Let us recall the theorem

1.48 Theorem. Suppose P ∈ B(H) be a non-zero projection, i.e., P2 = P, then TFAE:

1. P is an orthogonal projection, so N (P) ⊥ R(P).

2. ∥P∥ = 1.

3. ⟨Px, x⟩.

4. P = P∗.

5. P is normal.
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Last time we saw that given any projection (not necessarily orthogonal), we always have the
direct sum H = N (P) + R(P), x = Px + (I − P)x. Here N (P) = P−1({0}) and R(P) =
(I − P)−1({0}) (since x ∈ (I − P)−1({0}) ⇐⇒ (I − P)x = 0 ⇐⇒ Px = x ⇐⇒ x ∈ R(P))
are both closed subspaces since P is bounded. We prove the following chain of equivalences:
(1. ⇐⇒ 2. and 1. =⇒ 3. =⇒ 4. =⇒ 5. =⇒ 1.) We already proved that (1. =⇒ 2.).
Now we prove the rest of the equivalences.

Proof. (2. =⇒ 1.) We have ∥P∥ = 1. Let x ∈ N (P), y ∈ R(P). For any λ ∈ C,

∥λy∥2 = |λ|∥y∥2

= ∥P(x+ λy)∥2 (since Px = 0 and Pλy = λPy = λy)

≤ ∥x+ λy∥2 (since ∥P∥ = 1 =⇒ P is contractive)

= ⟨x+ λy, x+ λy⟩
= ∥x∥2 + 2Re(λ)⟨x, y⟩+ ∥λy∥2

Then ∥λy∥2 ≤ ∥x∥2 + 2Re(λ)⟨x, y⟩+ ∥λy∥2 which gives ∥x∥2 + 2Re(λ)⟨x, y⟩ ≥ 0 for all λ ∈ C.
Set λ = t⟨x, y⟩ for t ∈ R so that λ = t⟨y, x⟩. Then

∥x∥2 + 2Re(t|⟨x, y⟩|2 ≥ 0.

This inequality holds for all t ∈ R, hence if we choose t to be a small enough negative number

(t < −∥x∥2
2|⟨x,y⟩|2 ) then the inequality does not hold unless ⟨x, y⟩ = 0. Since we began with x ∈

N (P), y ∈ R(P), we have N (P) ⊥ R(P).

(1. =⇒ 3.)

⟨Px, x⟩ = ⟨Px, x− Px+ Px⟩
= ⟨Px, x− Px⟩+ ⟨Px, Px⟩
= ⟨Px, (I− P)x⟩+ ∥Px∥2 = ∥Px∥2 since N (P) = R(I− P) ⊥ R(P)

Thus, ⟨Px, x⟩ = ∥Px∥2 ≥ 0

(3. =⇒ 4.) We saw earlier, in the theorem on sesquilinear and quadratic forms, that an operator
P is Hermitian if, and only if ∀x ∈ H, x 7→ ⟨Px, x⟩ ∈ R which holds since ⟨Px, x⟩ ≥ 0.

(4. =⇒ 5.) P is Hermitian P = P∗ =⇒ P is normal, PP∗ = P∗P = P2.

(5. =⇒ 1.) If P is normal, then for each x ∈ H, ∥Px∥ = ∥P∗x∥ hence Px = o ⇐⇒ P∗x = 0.
We thus get that

N (P) = N (P∗) = R(P∗∗)⊥ = R(P)⊥.

Hence N (P) ⊥ R(P).

A good way of summarizing the properties of an orthogonal projection is P = PP∗ since this
implies P = P∗ and P = P2.
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1.49 Examples (The left shift operator). Let

S : ℓ2 −→ ℓ2 (Sx)j = xj+1.

It takes the element x = (x1, x2, · · · ) ∈ ℓ2 to (x2, x3, · · · ) ∈ ℓ2. ℓ2 is spanned by the orthonormal
basis {δs : s ∈ N} and ⟨Sx, x⟩ = ⟨x, S∗x⟩ for all x ∈ ℓ2. For the basis vectors, we have for s ≥ 2

⟨Sδs, δt⟩ = ⟨δs, S∗δt⟩
⟨δs+1, δt⟩ = ⟨δs, S∗δt⟩

⟨δs+1, δt⟩ = 1 for s+ 1 = t and 0 otherwise

Thus ⟨δs, S∗δt⟩ = 1 for s+ 1 = t and 0 otherwise,

(S∗δs+1)s = 1 =⇒ S∗δs = δs−1.

Note that ⟨Sδ1, δt⟩ = 0 = ⟨δs, S∗δt⟩ for all t thus S∗δ1 = 0. By extending linearly, we see that
the adjoint is given by the right shift operator

S∗ : ℓ2 −→ ℓ2 (S∗x)1 = 0; (S∗x)j = xj−1 for j ≥ 2

It takes the element (x1, x2, · · · ) ∈ ℓ2 to (0, x1, x2, · · · ) ∈ ℓ2. The map S∗ is an isometry
(S∗S = id) and is not onto since (thus not unitary) the element (x, 0, 0, · · · has no preimage
under S∗. The map S∗S given by (S∗Sx)1 = 0; (S∗Sx)j = xj for j ≥ 2 projects orthogonally onto
R(S∗).

2 Spectral Theory

Recall, from linear algebra, the concept of eigenvalues and eigenvectors. These gave us a lot
of information about matrices (or operators on finite dimensional vector spaces). In general, for
studying operators on Hilbert spaces, a generalized notion called the spectrum is introduced and
studied. It is defined as follows. Given an operator A, consider Tz = A − zIdH for z ∈ C
and ask if Tz has a bouned inverse. The resolvent is the set of {z ∈ C : Tz invertible} and
the spectrum is the complement of the resolvent. If Tz is invertible, the inverse is given by a
polynomial in powers of A. Thus the Neumann series

∑
i λiA

i 1associated with A, are studied to
understand the resolvent and spectrum. However, we will take a slightly different approach in this
course to introduce these notions. The main goal here is to understand the behaviour of normal
operators, especially unitary and Hermitian ones. Representation theory offers a good framework
for generating insight. A representation is a map from some ’structured space’ to operators on a
Hilbert space. We start with a definition of involutive semigroups.

2.1 Definition (Involutive semigroup). A pair (π : S, ∗) of a semigroup S with an involutive
anti-automorphism s 7→ s∗ is called an involutive semigroup.

Note:

• The anti-automorphism gives (st)∗ = t∗s∗, i.e., it reverses the order of the semigroup
operation.

1https://en.wikipedia.org/wiki/Neumann_series

3

https://en.wikipedia.org/wiki/Neumann_series


• If 1 is a unit, then 1s = s ∀s ∈ S. In particular, 11∗ = 1∗. Thus, (11∗)∗ = (1∗)∗ gives
11∗ = 1 and so 1∗ = 1.

2.2 Definition (Hermitian and unitaries). Elements in Sh = {s ∈ S : s = s∗} are called hermitian,
and elements in Su = {s ∈ S : ss∗ = s∗s = 1} are called unitaries. Su forms a group, the unitary
group of S.

2.3 Examples. 1. If S is an abelian semigroup and s∗ = s, s ∈ S, then (S, ∗) is an involutive
semigroup.

2. If G is a group, and g∗ = g−1, g ∈ G then (G, ∗) is an involutive semigroup.

3. B(H) with the adjoint operation A 7→ A∗, A ∈ B(H) is an involutive semigroup.

4. The multiplicative semigroup C∖ {0} with z∗ = z̄, z ∈ C is an involutive semigroup.

5. If X is any set then define CX := {f : X → C}, the set of all maps from X to C with
semigroup operation (fg)(x) = f(x)g(x) and involution f∗(x) = f(x), x ∈ X. (CX, ∗) is
an involutive semigroup.

• The Hermitian elements are precisely those functions satisfying f(x) = f(x) ∀x ∈ X,
i.e., the real-valued functions (CX

h = RX).

• The identity 1 satisfies f(x)1(x) = f(x) ∀x ∈ X. 1(x) = 1∀x ∈ X.

• The unitaries are CX
u = {f : X → C : |f(x)| = 1 ∀x ∈ X}. orthogonal projections

given by f(x) = |f(x)|2 ∀x ∈ X are precisely the functions with values 0 and 1.
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