Lecture Notes from September 15, 2022

taken by Tanvi Telang

Last time

- Characterization of unitaries
- Characterization of isometries (unitaries + a condition)
- Geometric characterization of normal operators
- Analogue of rank-nullity for $\mathcal{A} \in \mathbb{B}(\mathcal{H})$
- Characterization of orthogonal projections (proof in today's class)

Warm up:

1.47 Question. If \mathcal{H} is a finite-dimensional Hilbert space and $\mathcal{A}: \mathcal{H} \rightarrow \mathcal{H}$ a linear map satisfying $A^{*} A=\mathrm{id}_{\mathcal{H}}$. Then A is unitary.

We will see that A is onto, then (onto + isometry) \Longrightarrow unitary. A^{*} is onto since $A^{*} A=i d_{\mathcal{H}}$ so given any $x \in \mathcal{H}, A^{*} A x=x$ hence there exists $y=A x \in \mathcal{H}$ such that $A^{*} y=x$. We also know that $\mathcal{N}(\mathcal{A})=\mathcal{R}(\mathcal{A})^{\perp}=\{0\}$ and so \mathcal{A} is one-one. Next, using Rank-Nullity we have that $\operatorname{dim} \mathcal{H}=\operatorname{dim} \mathcal{N}(A)+\operatorname{dim} \mathcal{R}(A)=\operatorname{dim} \mathcal{R}(A), \mathcal{H}=\mathcal{R}(A)$ and so A is onto and hence A is unitary.

We continue the proof of the theorem from last time that characterized orthogonal projections. Let us recall the theorem
1.48 Theorem. Suppose $\mathrm{P} \in \mathbb{B}(\mathcal{H})$ be a non-zero projection, i.e., $\mathrm{P}^{2}=\mathrm{P}$, then TFAE:

1. P is an orthogonal projection, so $\mathcal{N}(\mathrm{P}) \perp \mathcal{R}(\mathrm{P})$.
2. $\|P\|=1$.
3. $\langle P x, x\rangle$.
4. $\mathrm{P}=\mathrm{P}^{*}$.
5. P is normal.

Last time we saw that given any projection (not necessarily orthogonal), we always have the direct sum $\mathcal{H}=\mathcal{N}(P)+\mathcal{R}(P), x=P x+(I-P) x$. Here $\mathcal{N}(P)=P^{-1}(\{0\})$ and $\mathcal{R}(P)=$ $(\mathrm{I}-\mathrm{P})^{-1}(\{0\})\left(\right.$ since $\left.x \in(\mathrm{I}-\mathrm{P})^{-1}(\{0\}) \Longleftrightarrow(\mathrm{I}-\mathrm{P}) x=0 \Longleftrightarrow \mathrm{P} x=x \Longleftrightarrow x \in \mathcal{R}(\mathrm{P})\right)$ are both closed subspaces since P is bounded. We prove the following chain of equivalences: $(1 . \Longleftrightarrow 2$. and $1 . \Longrightarrow 3 . \Longrightarrow 4 . \Longrightarrow 5 . \Longrightarrow$ 1.) We already proved that $(1 . \Longrightarrow 2$.). Now we prove the rest of the equivalences.

Proof. (2. \Longrightarrow 1.) We have $\|P\|=1$. Let $x \in \mathcal{N}(P), y \in \mathcal{R}(P)$. For any $\lambda \in \mathbb{C}$,

$$
\begin{aligned}
\|\lambda y\|^{2} & =|\lambda|\|y\|^{2} \\
& =\|P(x+\lambda y)\|^{2} \quad(\text { since } P x=0 \text { and } P \lambda y=\lambda P y=\lambda y) \\
& \leq\|x+\lambda y\|^{2} \quad(\text { since }\|P\|=1 \Longrightarrow P \text { is contractive }) \\
& =\langle x+\lambda y, x+\lambda y\rangle \\
& =\|x\|^{2}+2 \operatorname{Re}(\bar{\lambda})\langle x, y\rangle+\|\lambda y\|^{2}
\end{aligned}
$$

Then $\|\lambda y\|^{2} \leq\|x\|^{2}+2 \operatorname{Re}(\bar{\lambda})\langle x, y\rangle+\|\lambda y\|^{2}$ which gives $\|x\|^{2}+2 \operatorname{Re}(\bar{\lambda})\langle x, y\rangle \geq 0$ for all $\lambda \in \mathbb{C}$. Set $\lambda=t\langle x, y\rangle$ for $t \in \mathbb{R}$ so that $\bar{\lambda}=t\langle y, x\rangle$. Then

$$
\|x\|^{2}+2 \operatorname{Re}\left(t|\langle x, y\rangle|^{2} \geq 0\right.
$$

This inequality holds for all $t \in \mathbb{R}$, hence if we choose t to be a small enough negative number $\left(t<\frac{-\|x\|^{2}}{2 \|(x, y\rangle^{2}}\right)$ then the inequality does not hold unless $\langle x, y\rangle=0$. Since we began with $x \in$ $\mathcal{N}(\mathrm{P}), \mathrm{y} \in \mathcal{R}(\mathrm{P})$, we have $\mathcal{N}(\mathrm{P}) \perp \mathcal{R}(\mathrm{P})$.
(1. $\Longrightarrow 3$.

$$
\begin{aligned}
\langle\mathrm{P} x, \mathrm{x}\rangle & =\langle\mathrm{P} x, x-\mathrm{P} x+\mathrm{P} x\rangle \\
& =\langle\mathrm{P} x, x-\mathrm{P} x\rangle+\langle\mathrm{P} x, \mathrm{P} x\rangle \\
& =\langle\mathrm{P} x,(\mathrm{I}-\mathrm{P}) \mathrm{x}\rangle+\|\mathrm{P} x\|^{2} \quad=\|\mathrm{P} x\|^{2} \text { since } \mathcal{N}(\mathrm{P})=\mathcal{R}(\mathrm{I}-\mathrm{P}) \perp \mathcal{R}(\mathrm{P})
\end{aligned}
$$

Thus, $\langle P x, x\rangle=\|P x\|^{2} \geq 0$
(3. \Longrightarrow 4.) We saw earlier, in the theorem on sesquilinear and quadratic forms, that an operator P is Hermitian if, and only if $\forall x \in \mathcal{H}, x \mapsto\langle\mathrm{P} x, x\rangle \in \mathbb{R}$ which holds since $\langle\mathrm{P} x, x\rangle \geq 0$.
(4. \Longrightarrow 5.) P is Hermitian $\mathrm{P}=\mathrm{P}^{*} \Longrightarrow \mathrm{P}$ is normal, $\mathrm{PP}^{*}=\mathrm{P}^{*} \mathrm{P}=\mathrm{P}^{2}$.
(5. \Longrightarrow 1.) If P is normal, then for each $x \in \mathcal{H},\|P x\|=\left\|P^{*} x\right\|$ hence $P x=0 \Longleftrightarrow P^{*} x=0$. We thus get that

$$
\mathcal{N}(\mathrm{P})=\mathcal{N}\left(\mathrm{P}^{*}\right)=\mathcal{R}\left(\mathrm{P}^{* *}\right)^{\perp}=\mathcal{R}(\mathrm{P})^{\perp}
$$

Hence $\mathcal{N}(\mathrm{P}) \perp \mathcal{R}(\mathrm{P})$.
A good way of summarizing the properties of an orthogonal projection is $\mathrm{P}=\mathrm{PP}^{*}$ since this implies $P=P^{*}$ and $P=P^{2}$.
1.49 Examples (The left shift operator). Let

$$
S: \ell^{2} \longrightarrow \ell^{2} \quad(S x)_{j}=x_{j+1}
$$

It takes the element $x=\left(x_{1}, x_{2}, \cdots\right) \in \ell^{2}$ to $\left(x_{2}, x_{3}, \cdots\right) \in \ell^{2}$. ℓ^{2} is spanned by the orthonormal basis $\left\{\delta_{s}: s \in \mathbb{N}\right\}$ and $\langle S x, x\rangle=\left\langle x, S^{*} x\right\rangle$ for all $x \in \ell^{2}$. For the basis vectors, we have for $s \geq 2$

$$
\begin{gathered}
\left\langle\mathrm{S} \delta_{s}, \delta_{\mathrm{t}}\right\rangle=\left\langle\delta_{s}, \mathrm{~S}^{*} \delta_{\mathrm{t}}\right\rangle \\
\left\langle\delta_{s+1}, \delta_{\mathrm{t}}\right\rangle=\left\langle\delta_{s}, \mathrm{~S}^{*} \delta_{\mathrm{t}}\right\rangle \\
\left\langle\delta_{s+1}, \delta_{\mathrm{t}}\right\rangle=1 \text { for } \mathrm{s}+1=\mathrm{t} \text { and } 0 \text { otherwise } \\
\text { Thus }\left\langle\delta_{s}, S^{*} \delta_{\mathrm{t}}\right\rangle=1 \text { for } \mathrm{s}+1=\mathrm{t} \text { and } 0 \text { otherwise, } \\
\left(\mathrm{S}^{*} \delta_{s+1}\right)_{s}=1 \Longrightarrow \mathrm{~S}^{*} \delta_{s}=\delta_{s-1}
\end{gathered}
$$

Note that $\left\langle\mathrm{S}_{1}, \delta_{\mathrm{t}}\right\rangle=0=\left\langle\delta_{s}, S^{*} \delta_{\mathrm{t}}\right\rangle$ for all t thus $\mathrm{S}^{*} \delta_{1}=0$. By extending linearly, we see that the adjoint is given by the right shift operator

$$
S^{*}: \ell^{2} \longrightarrow \ell^{2} \quad\left(S^{*} x\right)_{1}=0 ; \quad\left(S^{*} x\right)_{j}=x_{j-1} \text { for } j \geq 2
$$

It takes the element $\left(x_{1}, x_{2}, \cdots\right) \in \ell^{2}$ to $\left(0, x_{1}, x_{2}, \cdots\right) \in \ell^{2}$. The map S^{*} is an isometry ($S^{*} S=i d$) and is not onto since (thus not unitary) the element ($x, 0,0, \cdots$ has no preimage under S^{*}. The map $S^{*} S$ given by $\left(S^{*} S x\right)_{1}=0 ;\left(S^{*} S x\right)_{j}=x_{j}$ for $j \geq 2$ projects orthogonally onto $\mathcal{R}\left(\mathrm{S}^{*}\right)$.

2 Spectral Theory

Recall, from linear algebra, the concept of eigenvalues and eigenvectors. These gave us a lot of information about matrices (or operators on finite dimensional vector spaces). In general, for studying operators on Hilbert spaces, a generalized notion called the spectrum is introduced and studied. It is defined as follows. Given an operator A, consider $T_{z}=A-z \operatorname{Id}_{\mathcal{H}}$ for $z \in \mathbb{C}$ and ask if T_{z} has a bouned inverse. The resolvent is the set of $\left\{z \in \mathbb{C}: T_{z}\right.$ invertible $\}$ and the spectrum is the complement of the resolvent. If T_{z} is invertible, the inverse is given by a polynomial in powers of A. Thus the Neumann series $\sum_{i} \lambda_{i} A^{i}{ }^{1}$ associated with A, are studied to understand the resolvent and spectrum. However, we will take a slightly different approach in this course to introduce these notions. The main goal here is to understand the behaviour of normal operators, especially unitary and Hermitian ones. Representation theory offers a good framework for generating insight. A representation is a map from some 'structured space' to operators on a Hilbert space. We start with a definition of involutive semigroups.
2.1 Definition (Involutive semigroup). A pair $(\pi: S, *)$ of a semigroup S with an involutive anti-automorphism $s \mapsto s^{*}$ is called an involutive semigroup.

Note:

- The anti-automorphism gives $(s t)^{*}=t^{*} s^{*}$, i.e., it reverses the order of the semigroup operation.

[^0]- If 1 is a unit, then $1 s=s \forall s \in S$. In particular, $11^{*}=1^{*}$. Thus, $\left(11^{*}\right)^{*}=\left(1^{*}\right)^{*}$ gives $11^{*}=1$ and so $1^{*}=1$.
2.2 Definition (Hermitian and unitaries). Elements in $S_{h}=\left\{s \in S: s=s^{*}\right\}$ are called hermitian, and elements in $S_{u}=\left\{s \in S: s s^{*}=s^{*} s=1\right\}$ are called unitaries. S_{u} forms a group, the unitary group of S.
2.3 Examples. 1. If S is an abelian semigroup and $s^{*}=s, s \in S$, then $(S, *)$ is an involutive semigroup.

2. If G is a group, and $\mathrm{g}^{*}=\mathrm{g}^{-1}, \mathrm{~g} \in \mathrm{G}$ then $(\mathrm{G}, *)$ is an involutive semigroup.
3. $\mathbb{B}(\mathcal{H})$ with the adjoint operation $A \mapsto A^{*}, A \in \mathbb{B}(\mathcal{H})$ is an involutive semigroup.
4. The multiplicative semigroup $\mathbb{C} \backslash\{0\}$ with $z^{*}=\bar{z}, z \in \mathbb{C}$ is an involutive semigroup.
5. If X is any set then define $\mathbb{C}^{X}:=\{f: X \rightarrow \mathbb{C}\}$, the set of all maps from X to \mathbb{C} with semigroup operation $(f g)(x)=f(x) g(x)$ and involution $f^{*}(x)=\overline{f(x)}, x \in X .\left(\mathbb{C}^{X}, *\right)$ is an involutive semigroup.

- The Hermitian elements are precisely those functions satisfying $f(x)=\overline{f(x)} \forall x \in X$, i.e., the real-valued functions $\left(\mathbb{C}_{h}^{X}=\mathbb{R}^{X}\right)$.
- The identity 1 satisfies $f(x) 1(x)=f(x) \quad \forall x \in X .1(x)=1 \forall x \in X$.
- The unitaries are $\mathbb{C}_{\mathfrak{u}}^{X}=\{\mathrm{f}: X \rightarrow \mathbb{C}:|f(x)|=1 \quad \forall x \in X\}$. orthogonal projections given by $f(x)=|f(x)|^{2} \quad \forall x \in X$ are precisely the functions with values 0 and 1 .

[^0]: ${ }^{1}$ https://en.wikipedia.org/wiki/Neumann_series

