Lecture Notes from September 15, 2022

taken by Tanvi Telang

Last time

- Characterization of unitaries
- Characterization of isometries (unitaries + a condition)
- Geometric characterization of normal operators
- Analogue of rank-nullity for $A \in \mathbb{B}(\mathcal{H})$
- Characterization of orthogonal projections (proof in today's class)

Warm up:

1.47 Question. If \mathcal{H} is a finite-dimensional Hilbert space and $A : \mathcal{H} \to \mathcal{H}$ a linear map satisfying $A^*A = id_{\mathcal{H}}$. Then A is unitary.

We will see that A is onto, then (onto + isometry) \implies unitary. A* is onto since A*A = id_H so given any $x \in \mathcal{H}$, A*Ax = x hence there exists $y = Ax \in \mathcal{H}$ such that $A^*y = x$. We also know that $\mathcal{N}(A) = \mathcal{R}(A)^{\perp} = \{0\}$ and so A is one-one. Next, using Rank-Nullity we have that $\dim \mathcal{H} = \dim \mathcal{N}(A) + \dim \mathcal{R}(A) = \dim \mathcal{R}(A)$, $\mathcal{H} = \mathcal{R}(A)$ and so A is onto and hence A is unitary.

We continue the proof of the theorem from last time that characterized orthogonal projections. Let us recall the theorem

1.48 Theorem. Suppose $P \in \mathbb{B}(\mathcal{H})$ be a non-zero projection, i.e., $P^2 = P$, then TFAE:

- 1. P is an orthogonal projection, so $\mathcal{N}(P) \perp \mathcal{R}(P)$.
- 2. $\|P\| = 1$.
- 3. $\langle Px, x \rangle$.
- 4. $P = P^*$.
- 5. P is normal.

Last time we saw that given any projection (not necessarily orthogonal), we always have the direct sum $\mathcal{H} = \mathcal{N}(P) + \mathcal{R}(P)$, x = Px + (I - P)x. Here $\mathcal{N}(P) = P^{-1}(\{0\})$ and $\mathcal{R}(P) = (I - P)^{-1}(\{0\})$ (since $x \in (I - P)^{-1}(\{0\}) \iff (I - P)x = 0 \iff Px = x \iff x \in \mathcal{R}(P)$) are both closed subspaces since P is bounded. We prove the following chain of equivalences: $(1. \iff 2. \text{ and } 1. \implies 3. \implies 4. \implies 5. \implies 1.$) We already proved that $(1. \implies 2.)$. Now we prove the rest of the equivalences.

Proof. (2. \implies 1.) We have ||P|| = 1. Let $x \in \mathcal{N}(P), y \in \mathcal{R}(P)$. For any $\lambda \in \mathbb{C}$,

$$\begin{split} \|\lambda y\|^2 &= |\lambda| \|y\|^2 \\ &= \|P(x + \lambda y)\|^2 \quad (\text{since } Px = 0 \text{ and } P\lambda y = \lambda Py = \lambda y) \\ &\leq \|x + \lambda y\|^2 \quad (\text{since } \|P\| = 1 \implies P \text{ is contractive}) \\ &= \langle x + \lambda y, x + \lambda y \rangle \\ &= \|x\|^2 + 2\text{Re}(\overline{\lambda})\langle x, y \rangle + \|\lambda y\|^2 \end{split}$$

Then $\|\lambda y\|^2 \leq \|x\|^2 + 2Re(\overline{\lambda})\langle x, y \rangle + \|\lambda y\|^2$ which gives $\|x\|^2 + 2Re(\overline{\lambda})\langle x, y \rangle \geq 0$ for all $\lambda \in \mathbb{C}$. Set $\lambda = t\langle x, y \rangle$ for $t \in \mathbb{R}$ so that $\overline{\lambda} = t\langle y, x \rangle$. Then

$$\|\mathbf{x}\|^2 + 2\operatorname{Re}(\mathbf{t}|\langle \mathbf{x}, \mathbf{y} \rangle|^2 \ge 0.$$

This inequality holds for all $t \in \mathbb{R}$, hence if we choose t to be a small enough negative number $(t < \frac{-\|x\|^2}{2|\langle x,y\rangle|^2})$ then the inequality does not hold unless $\langle x,y\rangle = 0$. Since we began with $x \in \mathcal{N}(P), y \in \mathcal{R}(P)$, we have $\mathcal{N}(P) \perp \mathcal{R}(P)$.

$$(1. \implies 3.)$$

$$\begin{split} \langle \mathsf{P}x, x \rangle &= \langle \mathsf{P}x, x - \mathsf{P}x + \mathsf{P}x \rangle \\ &= \langle \mathsf{P}x, x - \mathsf{P}x \rangle + \langle \mathsf{P}x, \mathsf{P}x \rangle \\ &= \langle \mathsf{P}x, (I - \mathsf{P})x \rangle + \|\mathsf{P}x\|^2 \qquad = \|\mathsf{P}x\|^2 \text{ since } \mathcal{N}(\mathsf{P}) = \mathcal{R}(I - \mathsf{P}) \perp \mathcal{R}(\mathsf{P}) \end{split}$$

Thus, $\langle Px,x\rangle = \|Px\|^2 \geq 0$

(3. \implies 4.) We saw earlier, in the theorem on sesquilinear and quadratic forms, that an operator P is Hermitian if, and only if $\forall x \in \mathcal{H}, x \mapsto \langle Px, x \rangle \in \mathbb{R}$ which holds since $\langle Px, x \rangle \ge 0$.

(4. \implies 5.) P is Hermitian $P = P^* \implies P$ is normal, $PP^* = P^*P = P^2$.

(5. \implies 1.) If P is normal, then for each $x \in \mathcal{H}$, $||Px|| = ||P^*x||$ hence $Px = o \iff P^*x = 0$. We thus get that

$$\mathcal{N}(\mathsf{P}) = \mathcal{N}(\mathsf{P}^*) = \mathcal{R}(\mathsf{P}^{**})^{\perp} = \mathcal{R}(\mathsf{P})^{\perp}.$$

Hence $\mathcal{N}(\mathsf{P}) \perp \mathcal{R}(\mathsf{P})$.

A good way of summarizing the properties of an orthogonal projection is $P = PP^*$ since this implies $P = P^*$ and $P = P^2$.

1.49 Examples (The left shift operator). Let

$$S: \ell^2 \longrightarrow \ell^2 \quad (Sx)_j = x_{j+1}.$$

It takes the element $x = (x_1, x_2, \dots) \in \ell^2$ to $(x_2, x_3, \dots) \in \ell^2$. ℓ^2 is spanned by the orthonormal basis $\{\delta_s : s \in \mathbb{N}\}$ and $\langle Sx, x \rangle = \langle x, S^*x \rangle$ for all $x \in \ell^2$. For the basis vectors, we have for $s \ge 2$

$$\begin{split} \langle S\delta_s, \delta_t \rangle &= \langle \delta_s, S^*\delta_t \rangle \\ \langle \delta_{s+1}, \delta_t \rangle &= \langle \delta_s, S^*\delta_t \rangle \\ \langle \delta_{s+1}, \delta_t \rangle &= 1 \text{ for } s+1 = t \text{ and } 0 \text{ otherwise} \\ \text{Thus } \langle \delta_s, S^*\delta_t \rangle &= 1 \text{ for } s+1 = t \text{ and } 0 \text{ otherwise}, \\ (S^*\delta_{s+1})_s &= 1 \implies S^*\delta_s = \delta_{s-1}. \end{split}$$

Note that $\langle S\delta_1, \delta_t \rangle = 0 = \langle \delta_s, S^* \delta_t \rangle$ for all t thus $S^* \delta_1 = 0$. By extending linearly, we see that the adjoint is given by the right shift operator

$$S^*:\ell^2 \longrightarrow \ell^2 \quad (S^*x)_1=0; \ (S^*x)_j=x_{j-1} \ \text{for} \ j\geq 2$$

It takes the element $(x_1, x_2, \dots) \in \ell^2$ to $(0, x_1, x_2, \dots) \in \ell^2$. The map S^* is an isometry $(S^*S = id)$ and is not onto since (thus not unitary) the element $(x, 0, 0, \dots)$ has no preimage under S^* . The map S^*S given by $(S^*Sx)_1 = 0$; $(S^*Sx)_j = x_j$ for $j \ge 2$ projects orthogonally onto $\mathcal{R}(S^*)$.

2 Spectral Theory

Recall, from linear algebra, the concept of eigenvalues and eigenvectors. These gave us a lot of information about matrices (or operators on finite dimensional vector spaces). In general, for studying operators on Hilbert spaces, a generalized notion called the *spectrum* is introduced and studied. It is defined as follows. Given an operator A, consider $T_z = A - zId_{\mathcal{H}}$ for $z \in \mathbb{C}$ and ask if T_z has a bouned inverse. The resolvent is the set of $\{z \in \mathbb{C} : T_z \text{ invertible}\}$ and the spectrum is the complement of the resolvent. If T_z is invertible, the inverse is given by a polynomial in powers of A. Thus the Neumann series $\sum_i \lambda_i A^{i-1}$ associated with A, are studied to understand the resolvent and spectrum. However, we will take a slightly different approach in this course to introduce these notions. The main goal here is to understand the behaviour of normal operators, especially unitary and Hermitian ones. Representation theory offers a good framework for generating insight. A representation is a map from some 'structured space' to operators on a Hilbert space. We start with a definition of involutive semigroups.

2.1 Definition (Involutive semigroup). A pair $(\pi : S, *)$ of a semigroup S with an involutive anti-automorphism $s \mapsto s^*$ is called an *involutive semigroup*.

Note:

• The anti-automorphism gives $(st)^* = t^*s^*$, i.e., it reverses the order of the semigroup operation.

¹https://en.wikipedia.org/wiki/Neumann_series

• If 1 is a unit, then $1s = s \ \forall s \in S$. In particular, $11^* = 1^*$. Thus, $(11^*)^* = (1^*)^*$ gives $11^* = 1$ and so $1^* = 1$.

2.2 Definition (Hermitian and unitaries). Elements in $S_h = \{s \in S : s = s^*\}$ are called *hermitian*, and elements in $S_u = \{s \in S : ss^* = s^*s = 1\}$ are called *unitaries*. S_u forms a group, the unitary group of S.

- 2.3 Examples. 1. If S is an abelian semigroup and $s^* = s$, $s \in S$, then (S, *) is an involutive semigroup.
 - 2. If G is a group, and $g^* = g^{-1}$, $g \in G$ then (G, *) is an involutive semigroup.
 - 3. $\mathbb{B}(\mathcal{H})$ with the adjoint operation $A \mapsto A^*$, $A \in \mathbb{B}(\mathcal{H})$ is an involutive semigroup.
 - 4. The multiplicative semigroup $\mathbb{C} \setminus \{0\}$ with $z^* = \overline{z}$, $z \in \mathbb{C}$ is an involutive semigroup.
 - 5. If X is any set then define $\mathbb{C}^X := \{f : X \to \mathbb{C}\}$, the set of all maps from X to \mathbb{C} with semigroup operation (fg)(x) = f(x)g(x) and involution $f^*(x) = \overline{f(x)}, x \in X$. $(\mathbb{C}^X, *)$ is an involutive semigroup.
 - The Hermitian elements are precisely those functions satisfying $f(x) = \overline{f(x)} \quad \forall x \in X$, i.e., the real-valued functions $(\mathbb{C}_{h}^{X} = \mathbb{R}^{X})$.
 - The identity 1 satisfies f(x)1(x) = f(x) $\forall x \in X$. $1(x) = 1 \forall x \in X$.
 - The unitaries are $\mathbb{C}_{u}^{X} = \{f : X \to \mathbb{C} : |f(x)| = 1 \quad \forall x \in X\}$. orthogonal projections given by $f(x) = |f(x)|^2 \quad \forall x \in X$ are precisely the functions with values 0 and 1.