Last time

- Characterization of unitaries
- Characterization of isometries (unitaries + a condition)
- Geometric characterization of normal operators
- Analogue of rank-nullity for \(A \in \mathbb{B}(\mathcal{H}) \)
- Characterization of orthogonal projections (proof in today’s class)

Warm up:

1.47 Question. If \(\mathcal{H} \) is a finite-dimensional Hilbert space and \(A : \mathcal{H} \to \mathcal{H} \) a linear map satisfying \(A^*A = \text{id}_{\mathcal{H}} \). Then \(A \) is unitary.

We will see that \(A \) is onto, then (onto + isometry) \(\implies \) unitary. \(A^* \) is onto since \(A^*A = \text{id}_{\mathcal{H}} \) so given any \(x \in \mathcal{H} \), \(A^*Ax = x \) hence there exists \(y = Ax \in \mathcal{H} \) such that \(A^*y = x \). We also know that \(\mathcal{N}(A) = \mathcal{R}(A)^\perp = \{0\} \) and so \(A \) is one-one. Next, using Rank-Nullity we have that \(\dim \mathcal{H} = \dim \mathcal{N}(A) + \dim \mathcal{R}(A) = \dim \mathcal{R}(A) \), \(\mathcal{H} = \mathcal{R}(A) \) and so \(A \) is onto and hence \(A \) is unitary.

We continue the proof of the theorem from last time that characterized orthogonal projections. Let us recall the theorem

1.48 Theorem. Suppose \(P \in \mathbb{B}(\mathcal{H}) \) be a non-zero projection, i.e., \(P^2 = P \), then TFAE:

1. \(P \) is an orthogonal projection, so \(\mathcal{N}(P) \perp \mathcal{R}(P) \).
2. \(\|P\| = 1 \).
3. \(\langle Px, x \rangle \).
4. \(P = P^* \).
5. \(P \) is normal.
Last time we saw that given any projection (not necessarily orthogonal), we always have the direct sum $H = \mathcal{N}(P) + \mathcal{R}(P)$, $x = Px + (I - P)x$. Here $\mathcal{N}(P) = P^{-1}(\{0\})$ and $\mathcal{R}(P) = (I - P)^{-1}(\{0\})$ (since $x \in (I - P)^{-1}(\{0\}) \iff (I - P)x = 0 \iff Px = x \iff x \in \mathcal{R}(P)$) are both closed subspaces since P is bounded. We prove the following chain of equivalences: (1. \iff 2. and 1. \implies 3. \implies 4. \implies 5. \implies 1.) We already proved that (1. \implies 2.). Now we prove the rest of the equivalences.

Proof. (2. \implies 1.) We have $\|P\| = 1$. Let $x \in \mathcal{N}(P), y \in \mathcal{R}(P)$. For any $\lambda \in \mathbb{C}$,

$$\|\lambda y\|^2 = |\lambda|\|y\|^2$$

$$= \|P(x + \lambda y)\|^2 \quad \text{(since } Px = 0 \text{ and } P\lambda y = \lambda P y = \lambda y)$$

$$\leq \|x + \lambda y\|^2 \quad \text{(since } \|P\| = 1 \implies P \text{ is contractive)}$$

$$= \langle x + \lambda y, x + \lambda y \rangle$$

$$= \|x\|^2 + 2\Re(\overline{\lambda}\langle x, y \rangle) + \|\lambda y\|^2$$

Then $\|\lambda y\|^2 \leq \|x\|^2 + 2\Re(\overline{\lambda}\langle x, y \rangle) + \|\lambda y\|^2$ which gives $\|x\|^2 + 2\Re(\overline{\lambda}\langle x, y \rangle) \geq 0$ for all $\lambda \in \mathbb{C}$. Set $\lambda = t\langle x, y \rangle$ for $t \in \mathbb{R}$ so that $\overline{\lambda} = t\langle y, x \rangle$. Then

$$\|x\|^2 + 2\Re(t\langle x, y \rangle)^2 \geq 0.$$

This inequality holds for all $t \in \mathbb{R}$, hence if we choose t to be a small enough negative number ($t < -\frac{\|x\|^2}{2\|\langle x, y \rangle\|^2}$) then the inequality does not hold unless $\langle x, y \rangle = 0$. Since we began with $x \in \mathcal{N}(P), y \in \mathcal{R}(P)$, we have $\mathcal{N}(P) \perp \mathcal{R}(P)$.

(1. \implies 3.)

$$\langle Px, x \rangle = \langle Px, x - Px + Px \rangle$$

$$= \langle Px, x - Px \rangle + \langle Px, Px \rangle$$

$$= \langle Px, (I - P)x \rangle + \|Px\|^2 \quad = \|Px\|^2 \text{ since } \mathcal{N}(P) = \mathcal{R}(I - P) \perp \mathcal{R}(P)$$

Thus, $\langle Px, x \rangle = \|Px\|^2 \geq 0$

(3. \implies 4.) We saw earlier, in the theorem on sesquilinear and quadratic forms, that an operator P is Hermitian if, and only if $\forall x \in \mathcal{H}, x \mapsto \langle Px, x \rangle \in \mathbb{R}$ which holds since $\langle Px, x \rangle \geq 0$.

(4. \implies 5.) P is Hermitian $P = P^* \implies P$ is normal, $PP^* = P^*P = P^2$.

(5. \implies 1.) If P is normal, then for each $x \in \mathcal{H}$, $\|Px\| = \|P^*x\|$ hence $Px = 0 \iff P^*x = 0$. We thus get that

$$\mathcal{N}(P) = \mathcal{N}(P^*) = \mathcal{R}(P^{**}) = \mathcal{R}(P) = \mathcal{R}(P^\perp).$$

Hence $\mathcal{N}(P) \perp \mathcal{R}(P)$. \square

A good way of summarizing the properties of an orthogonal projection is $P = PP^*$ since this implies $P = P^*$ and $P = P^2$.

2
1.49 Examples (The left shift operator). Let

\[S : ℓ² \rightarrow ℓ² \quad (Sx)_j = x_{j+1}. \]

It takes the element \(x = (x_1, x_2, \cdots) \in ℓ² \) to \((x_2, x_3, \cdots) \in ℓ² \). \(ℓ² \) is spanned by the orthonormal basis \(\{δ_s : s \in \mathbb{N}\} \) and \(\langle Sx, x \rangle = \langle x, S^*x \rangle \) for all \(x \in ℓ² \). For the basis vectors, we have for \(s \geq 2 \)

\[
\langle Sδ_s, δ_t \rangle = \langle δ_s, S^*δ_t \rangle \\
\langle δ_{s+1}, δ_t \rangle = \langle δ_s, S^*δ_t \rangle \\
\langle δ_{s+1}, δ_t \rangle = 1 \text{ for } s + 1 = t \text{ and } 0 \text{ otherwise}
\]

Thus \(\langle δ_s, S^*δ_t \rangle = 1 \) for \(s + 1 = t \) and \(0 \) otherwise,

\[
(S^*δ_{s+1})_s = 1 \implies S^*δ_s = δ_{s-1}.
\]

Note that \(\langle Sδ_1, δ_t \rangle = 0 = \langle δ_s, S^*δ_t \rangle \) for all \(t \) thus \(S^*δ_1 = 0 \). By extending linearly, we see that the adjoint is given by the right shift operator

\[S^* : ℓ² \rightarrow ℓ² \quad (S^*x)_1 = 0; \quad (S^*x)_j = x_{j-1} \text{ for } j \geq 2 \]

It takes the element \((x_1, x_2, \cdots) \in ℓ² \) to \((0, x_1, x_2, \cdots) \in ℓ² \). The map \(S^* \) is an isometry \((S^*S = \text{id}) \) and is not onto since (thus not unitary) the element \((x, 0, 0, \cdots) \) has no preimage under \(S^* \). The map \(S^*S \) given by \((S^*Sx)_1 = 0; \quad (S^*Sx)_j = x_j \) for \(j \geq 2 \) projects orthogonally onto \(R(S^*) \).

2 Spectral Theory

Recall, from linear algebra, the concept of eigenvalues and eigenvectors. These gave us a lot of information about matrices (or operators on finite dimensional vector spaces). In general, for studying operators on Hilbert spaces, a generalized notion called the spectrum is introduced and studied. It is defined as follows. Given an operator \(A \), consider \(T_z = A - z\text{Id}_H \) for \(z \in \mathbb{C} \) and ask if \(T_z \) has a bounded inverse. The resolvent is the set of \(\{z \in \mathbb{C} : T_z \text{ invertible}\} \) and the spectrum is the complement of the resolvent. If \(T_z \) is invertible, the inverse is given by a polynomial in powers of \(A \). Thus the Neumann series \(\sum_i λ_i A^i \) is associated with \(A \), are studied to understand the resolvent and spectrum. However, we will take a slightly different approach in this course to introduce these notions. The main goal here is to understand the behaviour of normal operators, especially unitary and Hermitian ones. Representation theory offers a good framework for generating insight. A representation is a map from some ‘structured space’ to operators on a Hilbert space. We start with a definition of involutive semigroups.

2.1 Definition (Involutive semigroup). A pair \((π : S, \ast)\) of a semigroup \(S \) with an involutive anti-automorphism \(s \mapsto s^\ast \) is called an involutive semigroup.

Note:

- The anti-automorphism gives \((st)^\ast = t^\ast s^\ast\), i.e., it reverses the order of the semigroup operation.

• If 1 is a unit, then 1s = s ∀s ∈ S. In particular, 11* = 1*. Thus, (11*)* = (1*)* gives 11* = 1 and so 1* = 1.

2.2 Definition (Hermitian and unitaries). Elements in \(S_h = \{ s ∈ S : s = s^* \} \) are called hermitian, and elements in \(S_u = \{ s ∈ S : ss^* = s^*s = 1 \} \) are called unitaries. \(S_u \) forms a group, the unitary group of \(S \).

2.3 Examples. 1. If \(S \) is an abelian semigroup and \(s^* = s \), \(s ∈ S \), then \((S, ∗) \) is an involutive semigroup.

2. If \(G \) is a group, and \(g^* = g^{-1} \), \(g ∈ G \) then \((G, ∗) \) is an involutive semigroup.

3. \(\mathbb{B}(H) \) with the adjoint operation \(A \mapsto A^* \), \(A ∈ \mathbb{B}(H) \) is an involutive semigroup.

4. The multiplicative semigroup \(\mathbb{C} \setminus \{0\} \) with \(z^* = \bar{z} \), \(z ∈ \mathbb{C} \) is an involutive semigroup.

5. If \(X \) is any set then define \(\mathbb{C}^X := \{ f : X → \mathbb{C} \} \), the set of all maps from \(X \) to \(\mathbb{C} \) with semigroup operation \((fg)(x) = f(x)g(x) \) and involution \(f^*(x) = \overline{f(x)} \), \(x ∈ X \). \((\mathbb{C}^X, ∗) \) is an involutive semigroup.

• The Hermitian elements are precisely those functions satisfying \(f(x) = \overline{f(x)} \) ∀\(x ∈ X \), i.e., the real-valued functions \((\mathbb{C}^X_h = \mathbb{R}^X) \).

• The identity 1 satisfies \(f(x)1(x) = f(x) \) ∀\(x ∈ X \). \(1(x) = 1 \) ∀\(x ∈ X \).

• The unitaries are \(\mathbb{C}^X_u = \{ f : X → \mathbb{C} : |f(x)| = 1 \) ∀\(x ∈ X \} \). orthogonal projections given by \(f(x) = |f(x)|^2 \) ∀\(x ∈ X \) are precisely the functions with values 0 and 1.