Lecture Notes from September 15, 2022

taken by Tanvi Telang

Last time

e Characterization of unitaries

Characterization of isometries (unitaries + a condition)

Geometric characterization of normal operators

Analogue of rank-nullity for A € B(H)

Characterization of orthogonal projections (proof in today's class)

Warm up:

1.47 Question. If H is a finite-dimensional Hilbert space and A : H — H a linear map satisfying
A*A =1idy. Then A is unitary.

We will see that A is onto, then (onto + isometry) = unitary. A* is onto since A*A = idy
so given any x € H, A*Ax = x hence there exists y = Ax € H such that A*y = x. We also
know that A'(A) = R(A)+ = {0} and so A is one-one. Next, using Rank-Nullity we have that
dimH = dimN(A) + dimR(A) = dimR(A), H = R(A) and so A is onto and hence A is
unitary.

We continue the proof of the theorem from last time that characterized orthogonal projections.
Let us recall the theorem

1.48 Theorem. Suppose P € B(H) be a non-zero projection, i.e., P> = P, then TFAE:
1. P is an orthogonal projection, so N'(P) L R(P).
2. ||P||=1.
3. (Px,x).
4. P =P~

5. P is normal.



Last time we saw that given any projection (not necessarily orthogonal), we always have the
direct sum H = N(P) + R(P), x = Px + (I — P)x. Here N(P) = P'({0}) and R(P) =
(I—P)'({0}) (sincex € (I—P)'({0})) & (I-P)x=0 & Px=x & x € R(P))
are both closed subspaces since P is bounded. We prove the following chain of equivalences:

(1. &= 2.and 1. = 3. =— 4. — 5. = 1.) We already proved that (1. = 2.).
Now we prove the rest of the equivalences.

Proof. (2. = 1.) We have ||P| = 1. Let x € N'(P),y € R(P). For any A € C,

IAyl* = Al [[y]|?
= ||P(x + Ay)||* (since Px =0 and PAy = APy = Ay)
< ||X+7‘9||2 (since ||P|| =1 = P is contractive)
= (x + Ay, x + Ay)
= [Ix[[* + 2Re(A)(x, y) + Ay

Then |[Ay|*> < ||Ix]|* + 2Re(A){x,y) + || Ay]|* which gives ||x|* + 2Re(A)(x,y) > O for all A € C.

Set A = t(x,y) for t € R so that A = t(y,x). Then
]I + 2Re(tl{x, y)* > 0.

This inequality holds for all t € R, hence if we choose t to be a small enough negative number
—|Ix]1?

(t < 2|<xy>|2) then the inequality does not hold unless (x,y) = 0. Since we began with x €
N(P),y € R(P), we have N (P) L R(P).

(1. = 3.

(Px,x) = (Px,x — Px + Px)
= (Px,x — Px) + (Px, Px)
= (Px, (I—P)x) + ||Px|? = ||Px||* since N'(P) = R(I—P) L R(P)

Thus, (Px,x) = ||Px||* >0

(3. = 4.) We saw earlier, in the theorem on sesquilinear and quadratic forms, that an operator
P is Hermitian if, and only if Vx € H, x — (Px,x) € R which holds since (Px,x) > 0.

(4. = 5.) P is Hermitian P = P* = P is normal, PP* = P*P = P2,

(5. = 1.) If P is normal, then for each x € H, ||Px|| = ||P*x|| hence Px =0 &= P*x =0.
We thus get that
N(P) = N(P*) = R(P*)" = R(P)".

Hence NV (P) L R(P). O

A good way of summarizing the properties of an orthogonal projection is P = PP* since this
implies P = P* and P = P2



1.49 Examples (The left shift operator). Let
S: QZ — €2 (SX))' = Xj+1.

It takes the element x = (x1,X2,---) € £ to (x2,X3,- - ) € £2. £? is spanned by the orthonormal
basis {8, : s € N} and (Sx,x) = (x,S*x) for all x € {2. For the basis vectors, we have for s > 2

(Sds, 8¢) = (85, S"0¢)
(Os41, 0t) = (85, S™04)
(8s11,0t) =1 for s+ 1 =1 and 0 otherwise
Thus (d5,S"8;) =1 for s +1 =1t and 0 otherwise,
(S"0s11)s =1 = S78s = bs1.

Note that (Sd1,8;) = 0 = (8, S*d;) for all t thus S*6; = 0. By extending linearly, we see that
the adjoint is given by the right shift operator

S* i P — ¢ (S™)1 =0; (S*x); =% forj>2

It takes the element (xi,%2,---) € £ to (0,%1,X2,---) € €. The map S* is an isometry
(§*S = id) and is not onto since (thus not unitary) the element (x,0,0,--- has no preimage
under S*. The map S*S given by (S*Sx); = 0; (S*Sx); = x; for j > 2 projects orthogonally onto
R(S*).

2 Spectral Theory

Recall, from linear algebra, the concept of eigenvalues and eigenvectors. These gave us a lot
of information about matrices (or operators on finite dimensional vector spaces). In general, for
studying operators on Hilbert spaces, a generalized notion called the spectrum is introduced and
studied. It is defined as follows. Given an operator A, consider T, = A — zIdy for z € C
and ask if T, has a bouned inverse. The resolvent is the set of {z € C : T, invertible} and
the spectrum is the complement of the resolvent. If T, is invertible, the inverse is given by a
polynomial in powers of A. Thus the Neumann series ZiAiAissociated with A, are studied to
understand the resolvent and spectrum. However, we will take a slightly different approach in this
course to introduce these notions. The main goal here is to understand the behaviour of normal
operators, especially unitary and Hermitian ones. Representation theory offers a good framework
for generating insight. A representation is a map from some 'structured space’ to operators on a
Hilbert space. We start with a definition of involutive semigroups.

2.1 Definition (Involutive semigroup). A pair (7 : S, %) of a semigroup S with an involutive
anti-automorphism s +— s* is called an involutive semigroup.

Note:

e The anti-automorphism gives (st)* = t*s*, i.e., it reverses the order of the semigroup
operation.

'https://en.wikipedia.org/wiki/Neumann_series


https://en.wikipedia.org/wiki/Neumann_series

e If 1is a unit, then 1s = s Vs € S. In particular, 11* = 1*. Thus, (11*)* = (1*)* gives
1MT*=Tandso 1* =1.

2.2 Definition (Hermitian and unitaries). Elementsin S, ={s € S : s = s*} are called hermitian,
and elements in S, = {s € S : ss* = s*s = 1} are called unitaries. S, forms a group, the unitary
group of S.

2.3 Examples. 1. If S is an abelian semigroup and s* =s, s € S, then (S, %) is an involutive
semigroup.

2. If G is a group, and g* = g~', g € G then (G, *) is an involutive semigroup.
3. B(H) with the adjoint operation A — A*, A € B(H) is an involutive semigroup.
4. The multiplicative semigroup C ~\ {0} with z* =z, z € C is an involutive semigroup.

5. If X is any set then define C* :=
semigroup operation (fg)(x) = f(x
an involutive semigroup.

{f : X — C}, the set of all maps from X to C with
)g(x) and involution f*(x) = f(x), x € X. (CXx) is

e The Hermitian elements are precisely those functions satisfying f(x) = f(x) Vx € X,
i.e., the real-valued functions (C} = R¥).

e The identity 1 satisfies f(x)1(x) = f(x) Vx € X. 1(x) = 1V¥x € X.

e The unitaries are CX = {f : X — C : [f(x)] = 1 Vx € X}. orthogonal projections
given by f(x) = [f(x)]* Vx € X are precisely the functions with values 0 and 1.
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