Lecture Notes from September 20, 2022

taken by Anshi Gupta

Last Time

- Characterization of orthogonal projection.
- Isometries v/s orthogonal projections.
- Semigroups

Warm up: Let X be a set, consider $\mathbb{C}^X \equiv \{f; f : X \to \mathbb{C}\}$ such that $(fg)(x) = f(x)g(x), f^*(x) = \overline{f(x)}$.

If f is an orthogonal projection, then $f^*f = f \iff \overline{f}f = f \iff |f|^2 = f \iff f$ has values 0 or 1.

4.5 Question. What are unitaries in \mathbb{C}^{\times} ?

The identity of \mathbb{C}^X is e(x) = 1.Unitary group of the semigroup is $\mathbb{C}_u^X = \{f : X \to \mathbb{C} : \forall x \in X, |f(x)| = 1\}$

4.6 Definition. A representation of an involutive semigroup S is a homomorphism $\pi: S \to B(\mathcal{H})$ where \mathcal{H} is a complex Hilbert space, and for which $\pi(s^*) = (\pi(s))^*$ for each $s \in S$. We also write (π, \mathcal{H}) if we need to keep track of \mathcal{H} .

If G is a group with $g^* = g^{-1}$ and $\pi(1) = id_{\mathcal{H}}$ then the representation is called unitary.

- 4.7 Remark. 1. From $g^*g = gg^* = 1$, we get $\pi(g) = B(\mathcal{H})_u$, so a unitary (group) representation maps into the unitary group of Hilbert space (since, $\pi(s^*s) = \pi(s^{-1}s = \pi(1) = id_{\mathcal{H}})$ and $\pi(s^*)\pi(s) = \pi(s^{-1}\pi(s) = (\pi(s))^{-1}\pi(s) = id_{\mathcal{H}})$.
 - 2. In general, if 1 is a unit of S and π is a representation, then we only know that $\pi(1) = (\pi(1)(\pi(1))^*, \pi(1))$ is an orthogonal projection. So $\pi(1)$ is an orthogonal projection based on the characterization of orthogonal projection in class.

4.8 Definition. Two representations (π, \mathcal{H}) and (π', \mathcal{H}) of an involutive semigroup are called equivalent if there is a unitary $u \in B(\mathcal{H}, \mathcal{H}')$ and for each $s \in S, u \circ \pi(s) = \pi'(s) \circ u$. In this context, u is called interwining operator. (Since, $u^*u \circ \pi(s) = u^*\pi'(s)u \implies \pi(s) = u^*\pi'(s) \circ u \circ \pi(s) \circ u^* = \pi'(s) \circ u \circ u^* \implies \pi^*(s) = u \circ \pi(s) \circ u^*$). This shows that we can learn all about π from π' and vice versa.

- 4.9 Remarks. 1. Let S = Z (additive) and s* = s, and let (π, H) be the unitary representation of S, so π(1) = u ∈ (B(H))_u and then π(0) = u⁰ ≡ id_H, u⁻ⁿ ≡ (u⁻¹)ⁿ. Conversely, given the unitary operator u on H, π(n) = uⁿ defines a representation of Z on H. Studying U and studying the associated representation concerns the same information.
 - 2. Let $S = (\mathbb{N}_0, +)$ such that $S = S^*$. If (π, \mathcal{H}) is a representation of S, then $A = \pi(1)$, then $\pi(n) = A^n$ and $A = A^*$. Studying representations of S is equivalent to studying each $A \in (B(\mathcal{H}))_h$
 - 3. Let $(\mathbb{N}_0 \times \mathbb{N}_0, +)$ with $((n, m))^* = (m, n)$. Then this is an abelian involutive semigroup. If (π, \mathcal{H}) is a representation, $A = \pi(1.0)$ defines π . Assuming $\pi(0, 0) = \mathrm{id}\mathcal{H}$, we have, $\pi(0, 1) = \pi((1, 0))^* = A^*$, and $AA^* = \pi(1, 0)\pi(0, 1) = \pi(1, 1) = \pi(0, 1)\pi(1, 0) = A^*A$. So, A is normal, and for each $n, m \in \mathbb{N}_0$, $\pi(n, m) = A^n(A^*)^m$

We have thus converted between studying unitary, hermitian and normal operators and study of representations of semigroups.

4.10 Question. Give a representation, can it be reduced to fundamental ingredients/parts?

- **4.11 Definition.** 1. A representation of an involutive semigroup is called non-degenerate if $\pi(S)\mathcal{H} = \{\pi(s)\nu : s \in S, \nu \in \mathcal{H}\}$ is total or equivalently $\pi(S)\mathcal{H}$ is dense in \mathcal{H} . This is the case if S has a unit 1 and $\pi(1) = id_{\mathcal{H}}($ Since $\pi(1)$ is an orthogonal projection, in general it projects onto a closed subspace of \mathcal{H} . Therefore, $\pi(S)\mathcal{H}$ is the subset of the closed subspace which may or may not be in \mathcal{H}).
 - 2. A representation (π, \mathcal{H}) of an involutive semigroup is called cyclic, if there is $\nu \in \mathcal{H}$ such that $\pi(S)\nu = {\pi(s)\nu : s \in S}$ is total.
 - 3. A representation (π, \mathcal{H}) of an involutive semigroup is called irreducible if 0 and \mathcal{H} are the only closed subspaces that are invariant under $\pi(S)$.

4.12 Lemma. Let (π, \mathcal{H}) be a representation of an involutive semigroup S , $E \subset \mathcal{H}$ be a subspace, and P_E be the orthogonal projection onto E, then the following are equivalent:

- 1. E is invariant under S.
- 2. E^{\perp} is invariant under S.
- 3. $P_E \pi(S) = \pi(S) P_E$

Proof. (1) \implies (2)

By $(\pi(s))^* = \pi(s^*)$ We know E is invariant under $\pi(s)$ if and only if E^{\perp} is invariant under $\pi(s^*)$. Hence, E is invariant under $\pi(S)$ if and only if E^{\perp} is invariant under $\pi(S)$. (2) \implies (3) Let $\nu \in \mathcal{H}, \nu_E = P_E \nu$. For $s \in S$

$$\begin{split} \mathsf{P}_{\mathsf{E}}\pi(s) \upsilon &= \mathsf{P}_{\mathsf{E}}\pi(s)(\underbrace{\nu_{\mathsf{E}}}_{\in\mathsf{E}} + \underbrace{\nu - \nu_{\mathsf{E}}}_{\in\mathsf{E}^{\perp}}) \\ &= \underbrace{\mathsf{P}_{\mathsf{E}}(\pi(s)\nu_{\mathsf{E}}}_{\in\mathsf{E}} + \underbrace{\pi(s)(\nu - c_{\mathsf{E}})}_{\in\mathsf{E}^{\perp}}) \\ &= \underbrace{\mathsf{P}_{\mathsf{E}}\pi(s)\nu_{\mathsf{E}}}_{\in\mathsf{E}} \\ &= \pi(s)\mathsf{P}_{\mathsf{E}}\nu_{\mathsf{E}} \\ &= \pi(s)\mathsf{P}_{\mathsf{E}}(\nu_{\mathsf{E}} + \nu - \nu_{\mathsf{E}}) \end{split}$$

We conclude $\mathsf{P}_{\mathsf{E}}\pi(s)=\pi(s)\mathsf{P}_{\mathsf{E}}$ for each $s\in S.$

-	-	-	-