Lecture Notes from September 20, 2022

taken by Anshi Gupta

Last Time

- Characterization of orthogonal projection.
- Isometries v / s orthogonal projections.
- Semigroups

Warm up: Let X be a set, consider $\mathbb{C}^{X} \equiv\{f ; f: X \rightarrow \mathbb{C}\}$ such that $(f g)(x)=f(x) g(x), f^{*}(x)=$ $\overline{f(x)}$.
If f is an orthogonal projection, then $f^{*} f=f \Longleftrightarrow \bar{f} f=f \Longleftrightarrow|f|^{2}=f \Longleftrightarrow \mathrm{f}$ has values 0 or 1 .

4.5 Question. What are unitaries in \mathbb{C}^{x} ?

The identity of \mathbb{C}^{X} is $e(x)=1$.Unitary group of the semigroup is $\mathbb{C}_{u}^{X}=\{f: X \rightarrow \mathbb{C}: \forall x \in$ $X,|f(x)|=1\}$
4.6 Definition. A representation of an involutive semigroup S is a homomorphism $\pi: S \rightarrow \mathrm{~B}(\mathcal{H})$ where \mathcal{H} is a complex Hilbert space, and for which $\pi\left(s^{*}\right)=(\pi(s))^{*}$ for each $s \in S$. We also write (π, \mathcal{H}) if we need to keep track of \mathcal{H}.
If G is a group with $\mathrm{g}^{*}=\mathrm{g}^{-1}$ and $\pi(1)=\mathrm{id}_{\mathcal{H}}$ then the representation is called unitary.
4.7 Remark. 1. From $\mathrm{g}^{*} \mathrm{~g}=\mathrm{gg}^{*}=1$, we get $\pi(\mathrm{g})=\mathrm{B}(\mathcal{H})_{\mathrm{u}}$, so a unitary (group) representation maps into the unitary group of Hilbert space (since, $\pi\left(\mathrm{s}^{*} \mathrm{~s}\right)=\pi\left(\mathrm{s}^{-1} \mathrm{~s}=\pi(1)=\mathrm{id}_{\mathcal{H}}\right.$ and $\pi\left(s^{*}\right) \pi(s)=\pi\left(s^{-1} \pi(s)=(\pi(s))^{-1} \pi(s)=\mathrm{id}_{\mathcal{H}}\right)$.
2. In general, if 1 is a unit of S and π is a representation, then we only know that $\pi(1)=$ $\left(\pi(1)(\pi(1))^{*}, \pi(1)\right.$ is an orthogonal projection. So $\pi(1)$ is an orthogonal projection based on the characterization of orthogonal projection in class.
4.8 Definition. Two representations (π, \mathcal{H}) and $\left(\pi^{\prime}, \mathcal{H}\right)$ of an involutive semigroup are called equivalent if there is a unitary $u \in B\left(\mathcal{H}, \mathcal{H}^{\prime}\right)$ and for each $s \in S, u \circ \pi(s)=\pi^{\prime}(s) \circ u$. In this context, u is called interwining operator. (Since, $u^{*} u \circ \pi(s)=u^{*} \pi^{\prime}(s) u \Longrightarrow \pi(s)=$ $u^{*} \pi^{\prime}(s) \circ u$. Conversely, $\left.u \circ \pi(s) \circ u^{*}=\pi^{\prime}(s) \circ u \circ u^{*} \Longrightarrow \pi^{*}(s)=u \circ \pi(s) \circ u^{*}\right)$. This shows that we can learn all about π from π and vice versa.
4.9 Remarks. 1. Let $S=Z$ (additive) and $s^{*}=s$, and let (π, \mathcal{H}) be the unitary representation of S, so $\pi(1)=u \in(B(\mathcal{H}))_{u}$ and then $\pi(0)=u^{0} \equiv \operatorname{id}_{\mathcal{H}}, u^{-n} \equiv\left(u^{-1}\right)^{n}$.
Conversely, given the unitary operator u on $\mathcal{H}, \pi(n)=u^{n}$ defines a representation of Z on \mathcal{H}.
Studying U and studying the associated representation concerns the same information.
2. Let $S=\left(\mathbb{N}_{0},+\right)$ such that $S=S^{*}$. If (π, \mathcal{H}) is a representation of S, then $A=\pi(1)$, then $\pi(n)=A^{n}$ and $A=A^{*}$. Studying representations of S is equivalent to studying each $A \in(B(\mathcal{H}))_{h}$
3. Let $\left(\mathbb{N}_{0} \times \mathbb{N}_{0},+\right)$ with $((n, m))^{*}=(\mathfrak{m}, n)$. Then this is an abelian involutive semigroup. If (π, \mathcal{H}) is a representation, $\mathcal{A}=\pi(1.0)$ defines π. Assuming $\pi(0,0)=\mathrm{id} \mathcal{H}$, we have, $\pi(0,1)=\pi((1,0))^{*}=A^{*}$, and $A A^{*}=\pi(1,0) \pi(0,1)=\pi(1,1)=\pi(0,1) \pi(1,0)=A^{*} A$. So, A is normal, and for each $n, m \in \mathbb{N}_{0}, \pi(n, m)=A^{n}\left(A^{*}\right)^{m}$
We have thus converted between studying unitary, hermitian and normal operators and study of representations of semigroups.
4.10 Question. Give a representation, can it be reduced to fundamental ingredients/parts?
4.11 Definition. 1. A representation of an involutive semigroup is called non-degenerate if $\pi(S) \mathcal{H}=\{\pi(s) v: s \in S, v \in \mathcal{H}\}$ is total or equivalently $\pi(S) \mathcal{H}$ is dense in \mathcal{H}. This is the case if S has a unit 1 and $\pi(1)=\mathrm{id}_{\mathcal{H}}($ Since $\pi(1)$ is an orthogonal projection, in general it projects onto a closed subspace of \mathcal{H}. Therefore, $\pi(S) \mathcal{H}$ is the subset of the closed subspace which may or may not be in \mathcal{H}).
2. A representation (π, \mathcal{H}) of an involutive semigroup is called cyclic, if there is $v \in \mathcal{H}$ such that $\pi(S) v=\{\pi(s) v: s \in S\}$ is total.
3. A representation (π, \mathcal{H}) of an involutive semigroup is called irreducible if 0 and \mathcal{H} are the only closed subspaces that are invariant under $\pi(\mathrm{S})$.
4.12 Lemma. Let (π, \mathcal{H}) be a representation of an involutive semigroup $\mathrm{S}, \mathrm{E} \subset \mathcal{H}$ be a subspace, and P_{E} be the orthogonal projection onto E , then the following are equivalent:

1. E is invariant under S .
2. E^{\perp} is invariant under S .
3. $\mathrm{P}_{\mathrm{E}} \pi(\mathrm{S})=\pi(\mathrm{S}) \mathrm{P}_{\mathrm{E}}$

Proof. (1) $\Longrightarrow(2)$
By $(\pi(s))^{*}=\pi\left(s^{*}\right)$ We know E is invariant under $\pi(s)$ if and only if E^{\perp} is invariant under $\pi\left(s^{*}\right)$. Hence, E is invariant under $\pi(\mathrm{S})$ if and only if E^{\perp} is invariant under $\pi(\mathrm{S})$.
(2) \Longrightarrow (3)

Let $v \in \mathcal{H}, v_{\mathrm{E}}=\mathrm{P}_{\mathrm{E}} v$. For $s \in \mathrm{~S}$

$$
\begin{aligned}
\mathrm{P}_{\mathrm{E}} \pi(\mathrm{~s}) v & =\mathrm{P}_{\mathrm{E}} \pi(\mathrm{~s})(\underbrace{v_{\mathrm{E}}}_{\in \mathrm{E}}+\underbrace{v-v_{\mathrm{E}}}_{\in \mathrm{E}^{\perp}}) \\
& =\underbrace{\mathrm{P}_{\mathrm{E}}\left(\pi(\mathrm{~s}) v_{\mathrm{E}}\right.}_{\in \mathrm{E}}+\underbrace{\pi(\mathrm{s})\left(v-\mathrm{c}_{\mathrm{E}}\right)}_{\in \mathrm{E}^{\perp}} \\
& =\underbrace{\mathrm{P}_{\mathrm{E}} \pi(\mathrm{~s}) v_{\mathrm{E}}}_{\in \mathrm{E}} \\
& =\pi(\mathrm{s}) \mathrm{P}_{\mathrm{E}} v_{\mathrm{E}} \\
& =\pi(\mathrm{s}) \mathrm{P}_{\mathrm{E}}\left(v_{\mathrm{E}}+v-v_{\mathrm{E}}\right)
\end{aligned}
$$

We conclude $P_{E} \pi(s)=\pi(s) P_{E}$ for each $s \in S$.

