Lecture Notes from September 20, 2022

taken by Cristian Meraz

Last time

- Characterization of orthogonal projections.
- Isometries versus orthogonal projections.
- Semigroups.

Warm up:

Let X be a set. Last class, we considered the space

$$\mathbb{C}^{\mathsf{X}} \equiv \{\mathsf{f}: \mathsf{X} \to \mathbb{C}\},\$$

as a semigroup, where the operation is pointwise multiplication: $(\underline{fg})(x) = f(x)g(x)$, and the anti-automorphism is given by the complex conjugate: $f^*(x) = \overline{f(x)}$. We might consider the following:

1.6 Question. What are the unitaries in \mathbb{C}^{X} ? What about the orthogonal projections?

Well, the identity in \mathbb{C}^{X} is $e(x) \equiv 1$. Hence the unitary group of the semigroup is

 $(\mathbb{C}^X)_{\mathfrak{u}} = \{ f : X \to \mathbb{C} : \text{for all } x \in X, |f(x)| = 1 \}$

since $f(x)f^*(x) = f(x)\overline{f(x)} = |f(x)|^2$. As for the orthogonal projections, they are the 0 or 1 valued functions as they satisfy $f(x)\overline{f(x)} = f(x)$ from our characterization of orthogonal projections.

A bit of wisdom before we continue:

If anyone asks you in anything in math, you just say zero. And if they say no, then you say one. - Professor Bodmann

1.7 Definition. A representation of an involutive semigroup S is a homomorphism $\pi: S \to B(\mathcal{H})$, that is,

$$\pi(ab) = \pi(a)\pi(b)$$

for all $a, b \in S$, where \mathcal{H} is the complex Hilbert space, and for which

$$\pi(s^*) = (\pi(s))^*$$
 for each $s \in S$.

- We write the representation as a pair (π, \mathcal{H}) if we need to keep track of \mathcal{H} .
- If S = G is a group with $g^* = g^{-1}$ and $\pi(1) = id_{\mathcal{H}}$, then the representation is called *unitary*.

1.8 Question. Why is it a 'good' idea to call such representations unitaries?

From $g^*g = gg^* = 1$, we have $\pi(g) \in (B(\mathcal{H}))_u$, so a unitary (group) representation maps into the unitary group of a Hilbert space.

• In general, if 1 is a unit of S and π are representation, then we only know $\pi(1) = \pi(1)(\pi(1))^*$, which implies that $\pi(1)$ is an orthogonal projection.

1.9 Definition. Two representations (π, \mathcal{H}) and (π', \mathcal{H}') of an involutive semigroup S are called equivalent if there exists a unitary $u \in B(\mathcal{H}, \mathcal{H}')$ and for each $s \in S$,

$$\mathfrak{u}\circ\pi(\mathfrak{s})=\pi'(\mathfrak{s})\circ\mathfrak{u}.$$

• In this context, u is called an *intertwining operator*.

1.10 Exercise. Show that the above definition induces an equivalence relation \sim on representations of involutive semigroups.

Proof sketch. <u>Reflexive.</u> $\pi \sim \pi$ since for each unitary $u \in B(\mathcal{H})$ and $s \in S$, we have

$$\mathfrak{u} \circ \pi(s) \circ \mathfrak{u}^{-1} = \pi(s) \quad \Rightarrow \quad \mathfrak{u} \circ \pi(s) = \pi(s) \circ \mathfrak{u}.$$

Symmetric. Suppose (π, \mathcal{H}) and (π', \mathcal{H}') are two representations of an involutive semigroup S such that $\pi \sim \pi'$. Then there exists a unitary $u \in B(\mathcal{H}, \mathcal{H}')$ such that

$$\begin{split} \mathfrak{u}\circ\pi(s)&=\pi'(s)\circ\mathfrak{u}\\ \Longleftrightarrow&\pi(s)=\mathfrak{u}^{-1}\circ\pi'(s)\circ\mathfrak{u}\\ \Longleftrightarrow&\pi(s)\circ\mathfrak{u}^{-1}=\mathfrak{u}^{-1}\circ\pi'(s), \end{split}$$

hence, $\pi' \sim \pi$.

Transitive. We leave it to the reader.

1.11 Remark. (a) Let $S = \mathbb{Z}$ be the group of integers under addition, with $s^* = -s$, and let (π, \mathcal{H}) be a unitary representation of S. Then $\pi(1)$ is a unitary $\pi(1) = \mathfrak{u} \in (B(\mathcal{H}))_{\mathfrak{u}}$, hence

$$\pi(\mathfrak{n}) = \pi(1)^{\mathfrak{n}} = \mathfrak{u}^{\mathfrak{n}}$$
 for each $\mathfrak{n} \in \mathbb{Z}$

with $\pi(0) = u^0 = id_{\mathcal{H}}$. Also,

$$\mathfrak{u}^{-\mathfrak{n}} \equiv (\mathfrak{u}^{-1})^{\mathfrak{n}} = (\mathfrak{u}^*)^{\mathfrak{n}}$$
 for each $\mathfrak{n} \in \mathbb{Z}$.

Conversely, given a unitary \mathfrak{u} on \mathcal{H} , $\pi(1) = \mathfrak{u}^n$ defines a representation of \mathbb{Z} on \mathcal{H} . We see that studying \mathfrak{u} and studying the associated representations concern the same information.

(b) Let $S = (\mathbb{N}_0, +)$, $s^* = s$. If (π, \mathcal{H}) is a representation of S and $A = \pi(1)$, then for $n \in \mathbb{N}$ we have

$$\pi(n) = A^n$$
 and $A = A^*$.

We observe that studying representations of S is equivalent to studying each $A \in (B(\mathcal{H}))_h$.

- 6				
- 5	-	-	-	-

(c) Let $S = (\mathbb{N}_0 \times \mathbb{N}_0, +)$ with $(n, m)^* = (m, n)$. If (π, \mathcal{H}) is a representation of S, then we claim that $A = \pi(1, 0)$ determines π , assuming $\pi(0, 0) = id_{\mathcal{H}}$. We have

$$\pi(0,1) = \pi((1,0)^*)$$

= $(\pi(1,0))^* = A^*,$

and hence

$$AA^* = \pi(1,0)\pi(0,1) = \pi(1,1)$$

= $\pi(0,1)\pi(1,0) = A^*A$,

which implies that A is normal, and for all $m, n \in \mathbb{N}_0$, $\pi(m, n) = A^m (A^*)^n$. This shows the claim. Conversely, we see each normal operator defines a representation of this group.

We have thus converted between studying unitary, Hermitian, and normal operators and the study of representations of specific semigroups.

1.12 Question. Given a representation, can it be reduced to the fundamental ingredients/parts?

1.13 Definition. (a) A representation (π, \mathcal{H}) of an involutive semigroup is called *non-degenerate* if

$$\pi(S)\mathcal{H} = {\pi(s)\nu : s \in S, \nu \in \mathcal{H}}$$

is total, or equivalently, $\pi(S)\mathcal{H}$ is dense in \mathcal{H} .

(This is the case if S has a unit 1 and $\pi(1) = id_{\mathcal{H}}$.)

(b) A representation (π, \mathcal{H}) of an involutive semigroup is called *cyclic* if there is $v \in \mathcal{H}$ such that

$$\pi(S)\nu = \{\pi(s)\nu : s \in S\}$$

is total.

(c) A representation (π, \mathcal{H}) of an involutive semigroup is called *irreducible* if $\{0\}$ and \mathcal{H} are the only closed subspaces that are invariant under $\pi(S)$.

1.14 Remark. Irreducible representations are always cyclic. We will show this later.

1.15 Lemma. Let (π, \mathcal{H}) be a representation of an involutive semigroup S, $E \subset H$ a closed subspace, and P_E an orthogonal projection onto E. The following are equivalent:

- 1. E is invariant under π .
- 2. E^{\perp} is invariant under π .

3.
$$P_E \pi(S) = \pi(S) P_E$$
.

Proof strategy: Show (1) and (2) are equivalent, then use them to show that (3) holds, and finally show that (3) implies (1).

Proof. (1) \iff (2). We start by observing that $\pi(s)^* = \pi(s^*)$ implies E is invariant under $\pi(s)$ if and only if E^{\perp} is invariant under $\pi(s^*)$. Hence, E is invariant under $\pi(s)$ if and only if E^{\perp} is invariant under $\pi(s)$. Now assuming that E is invariant under π , E is invariant under $\pi(s)$ for all $s \in S$, and equivalently, this holds true for all $s^* \in S$. This is equivalent to E^{\perp} being invariant under $\pi(s)^* = \pi(s)^{**} = \pi(s)$ for all $s^* \in S$, which is equivalent to E^{\perp} invariant under $\pi(s)$ for all $s \in S$. This proves that E is invariant under π if and only if E^{\perp} is invariant under π .

(1) and (2) \Rightarrow (3). Let $\nu \in \mathcal{H}$ and set $\nu_E = P_E \nu$. For $s \in S$,

$$P_{E}\pi(s)\nu = P_{E}\pi(s)(\underbrace{\nu_{E}}_{\in E} + \underbrace{\nu - \nu_{E}}_{\in E^{\perp}})$$
$$= P_{E}(\pi(s)\nu_{E} + \pi(s)(\nu - \nu_{E}))$$
$$= P_{E}\pi(s)\nu_{E}$$
$$= \pi(s)P_{E}\nu.$$

We conclude $P_E \pi(s) = \pi(s)P_E$ for all $s \in S$. We delay the rest of the proof until the next lecture.