Operators on Hilbert Spaces

Lecture Notes from September 22, 2022 taken by Manpreet Singh

Warm up

• Is it necessary for the involutive semigroup representation to "respect" the involution property ($(\pi(s^*) = (\pi(s))^*$) to satisfy the equivalent properties in the lemma we did in the last lecture ?

Solution: Consider the semigroup $S = \mathbb{N}$, with addition. Let π be a semigroup representation given $\pi(1) = S^*, S^* : l^2 \mapsto l^2$ as

$$(S^*x)_j = \left\{ \begin{array}{l} 0; & \text{if } j = 1\\ x_{j-1}; & \text{if } j \ge 2 \end{array} \right\}$$
(1)

Notice that $(\pi(1))^* = (S^*)^* = S \neq S^* = \pi(1) = \pi(1^*)$. Further, observe that for $k \in \mathbb{N}$, π has invariant subspaces of the form,

$$V_k = \{x \in l^2; x_j = 0, 1 \le x \le k\}$$
$$V_k = \overline{span\{e_j; j \ge k+1\}}$$

However, we note that if $k \geq 2$, P_{V_k} being the orthogonal projection onto V_k

$$P_{V_k}\pi(1)e_k = P_{V_k}S^*e_k = P_{V_k}e_{k+1} = e_{k+1} \neq \pi(1)P_{V_k}e_k = 0$$

This example shows that if the involutive semigroup representation does not "respect" the involution property, then property (1) and (2) \Rightarrow property (3) in the lemma, we did in the last lecture.

Continuing from the last time (3) \implies (1) Assume (3) holds. Choose $v \in E$, $s \in S$ then

$$P_E \pi(s)v = \pi(s)P_E v = \pi(s)v$$

which shows that $\pi(s)v \in E$. Therefore, E is invariant under π .

Next, we question how serious the requirement of non-degeneracy is.

1.39 Theorem. If (π, H) is a representation of an involutive semigroup S then

$$H_0 = \{ v \in H; \forall s \in S, \pi(s)v = 0 \}$$

is a closed subspace. The representation of S on H_0^{\perp} is non degenerate and $H_0 = (\pi(S)H)^{\perp}$

Proof. Since

$$H_0 = \bigcap_{s \in S} \{ v \in H; \pi(s)v = 0 \}$$

where $\{v \in H; \pi(s)v = 0\}$ is a kernel of $\pi(s)$ and therefore closed subspace. Since H_0 is an arbitrary intersection of closed subspaces, hence H_0 is a closed subspace.

Using the relationship between orthogonal complement and adjoint, we get

$$H_0 = \bigcap_{s \in S} \mathcal{N}(\pi(s))$$

Since, $\mathcal{N}(\pi(s))=(\mathcal{R}((\pi(s))^*))^{\perp}$ and $(\pi(s))^*=\pi(s^*),$ we get with $S=S^*$

$$H_0 = \bigcap_{s \in S} (\mathcal{R}(\pi(s)))^{\perp}$$

Using $\mathcal{R}(\pi(s)) = \pi(s)(H)$, we get

$$H_0 = (\bigcup_{s \in S} \pi(s)(H))^{\perp} = (\pi(S)(H))^{\perp}$$

Hence,

$$H_0^{\perp} = ((\pi(S)(H))^{\perp})^{\perp} = \overline{span\pi(S)(H)}$$

By the previous lemma, since H_0 is invariant, so is H_0^{\perp} . Restricting π to H_0^{\perp} gives a nondegenerate representation, because $\pi(S)H = \pi(S)(H_0^{\perp})$ and hence span $\pi(S)(H_0^{\perp})$ is dense in H_0^{\perp} .

The preceding theorem gives us an example of showing how a Hilbert Space can be split into invariant subspaces under π . Conversely, we can combine representations.

1.40 Theorem. Let (π_i, H_i) be a family of representations of an involutive semigroup. If

$$\sup_{j\in J} \|\pi_j(s)\| < \infty$$

for each $s \in S$, then for $v = (v_j)_{j \in J} \in \bigoplus_{j \in J} H_j$

$$(\pi(s)v)_j = \pi_j(s)v_j$$

defines a representation of S on $H = \bigoplus_{j \in J} H_j$.

Proof. We verify that $\pi(s)$ maps H to itself. For $v = (v_j)_{j \in J} \in H$

$$\|\pi(s)v\|^2 = \sum_{j \in J} \|\pi_j(s)v_j\|^2 \le \sup_{j' \in J} \|\pi_{j'}(s)\|^2 \sum_{j \in J} \|v_j\|^2 < \infty$$

where $\sum_{j \in J} \|v_j\|^2 = \|v\|^2$

Since each π_j being a homomorphism, then so is π .

We claim that

$$(\pi(s))^* = \pi(s^*)$$

For $v = (v_j)_{j \in J}$ and $w = (w_j)_{j \in J}$

$$\langle \pi(s)v, w \rangle = \sum_{j \in J} \langle \pi_j(s)v_j, w_j \rangle_{H_j} = \sum_{j \in J} \langle v_j, (\pi_j(s))^* w_j \rangle_{H_j}$$

The second equality follows by using the definition of the adjoint of $\pi_j(S)$. Now, $(\pi_j(s))^* = \pi_j(s^*)$. Using this and the definition of adjoint of $\pi(s)$, we get that,

$$\langle \pi(s)v, w \rangle = \langle v, (\pi(s))^*w \rangle = \langle v, \pi(s^*)w \rangle$$

Thus, $(\pi(s))^*=\pi(s^*)$

This representation that combines (π_j, H_j) is called the **direct sum representation** $\pi = \bigoplus_{j \in J} \pi_j$.

Next, we see how to decompose a non degenerate representation into its cyclic components.

1.41 Lemma. Let (π, H) be a representation of an involutive semigroup and $v \in H$ then π is cyclic when restricted to $\overline{span\{\pi(S)v\}}$. If π is a non-degenerate then $v \in \overline{span\{\pi(S)v\}}$.

Proof. Let $H_1 = \overline{span\{\pi(S)v\}}$. Since, $\pi(s) \in \mathcal{B}(H)$ for all $s \in S$, then $\pi(s)$ is continuous and also π is an homomorphism, which gives us that H_1 is invariant under $\pi(S)$. Therefore,- we get $H = H_0 \oplus H_1$ with $H_0 = H_1^{\perp}$. We write $v = v_0 + v_1$, $v_0 \in H_0$, $v_1 \in H_1$. Let $s \in S$. Since H_1 is invariant under $\pi(S)$, by the equivalence property in a lemma in the last lecture, we get H_1^{\perp} is invariant under $\pi(S)$ i.e. H_0 is invariant under $\pi(S)$, therefore $\pi(s)v_0 \in H_0$.

$$\pi(s)v_0 = \pi(s)(v - v_1) = \pi(s)v - \pi(s)v_1 \in H_1$$

because $\pi(s)v, \pi(s)v_1 \in H_1$ and H_1 is a closed subspace. Hence, $\pi(s)v_0 = \{0\}$. Thus $\frac{\pi(S)v_1 = \pi(S)v}{span\{\pi(S)\}}(H) = H$, so

$$v_0 \in \bigcap_{s \in S} \mathcal{N}(\pi(s)) = (\bigcup_{s \in S} \pi(s)(H))^{\perp} = \{0\}_{s \in S}$$

and thus $v = v_1$, which implies $v \in H_1$.