
Lecture Notes from 22 September 2022
taken by Sean Campbell

Last time

• Properties of Representations

– non-degeneracy

– irreducibility

– cyclicity

• Invariant Subspaces and Projections

Warm up:

1.2 Question. Is the involutive structure necessary for us to decompose Hilpert spaces into direct
sums of invariant subspaces?

1.3 Answer. Yes, we can construct a counter example when the representation does not respect
the involutive structure.

Consider the semigroup S = N, with addition. Let π be a semigroup representation given by

π(1) = S∗

where S∗ : l2 → l2 is the shift operator (S∗(x))j =

{
0, j = 1
xj−1, j ≥ 2

.

1.4 Question. What are the invariant subspaces of l2 under the action of π?

Cheaply, we see that {0} and l2 are invariant, but additionally, the fact that S∗ always leaves
a 0 as the first element of a sequence in l2 leads us to consider the family of subspaces

Vk := {x ∈ l2 : xj = 0∀j < k}.

Each Vk is an invariant subspace, but their nesting is suspicious. To check our suspicions, we
note that if k ≥ 2, then we may denote Pk to represent the orthogonal projection onto Vk and
see that

Pkπ(1)ek−1 = PkS
∗ek−1

= Pkek = ek

6= 0
= π(1)0

= π(1)Pkek−1.
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This shows that the nice properties for involutive semigroups regarding projections onto invariant
subspaces truly rely on the presence of the involution.

Finishing the proof from last time

Picking up where we left off, we wanted to show that for any representation (π,H) of an involutive
semigroup S and a closed subspace E ⊂ H the following are equivalent:

1. E is invariant under π(S)

2. E⊥ is invariant under π(S)

3. PEπ(s) = π(s)PE, ∀s ∈ S.

Proof. We left off last time having shown 1 ⇐⇒ 2 =⇒ 3. So we now assume that the
projection onto E commutes with any realization of the representation. Then if we choose v ∈ E
and s ∈ S we have

π(s)v = π(s)PEv = PEπ(s)v ∈ E.
Thus, E is invariant under π(S).

1.5 Question. How serious is the non-degeneracy issue?

1.6 Answer. Not that serious, as we will see in the next Theorem.

1.7 Theorem. If (π,H) is a representation of an involutive semigroup S then

H0 = {v ∈ H : ∀s ∈ S, π(s)v = 0}

is a closed subspace. Moreover, π is non-degenerate when restricted to H⊥0 and H0 = (π(S)H)⊥.

Proof. To see that H0 is closed, note that

H0 ={v ∈ H : ∀s ∈ S, π(s)v = 0}

=
⋂
s∈S

{v ∈ H : π(s)v = 0}

=
⋂
s∈S

ker(π(s))

Which is the intersections of closed spaces. Using the relationship between the orthogonal com-
pliment and adjoint we see that,

H0 =
⋂
s∈S

ker(π(s)) =
⋂
s∈S

(
(π(s))∗H

)⊥
=
⋂
s∈S

(
π(s∗)H

)⊥
=
⋂
s∈S

(
π(s)H

)⊥
=
(⋃
s∈S

π(s)H
)⊥

=
(
π(S)H

)⊥
.

HenceH⊥0 = span(π(S)H). By the previous lemma, we get thatH⊥0 is invariant by the invariance
ofH0, and restricting π toH⊥0 yields a non-degenerate representation by construction as π(S)H =
π(S)(H⊥0 ) so span(π(S)(H⊥0 )) is dense in H⊥0 .
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The preceding theorem gives an example of how to decompose a Hilbert space into invariant
subspaces under a representation. Conversely, we may combine representations via the next
theorem.

1.8 Theorem. Let (πj,Hj) be a family of representations of the same involutive semigroup S
indexed by the set J. If supj∈J ‖πj(s)‖ <∞∀s ∈ S, then for v = (vj)j∈J ∈

⊕
j∈J
Hj,

(π(s)v)j ≡ πj(s)vj

defines a representation of S on H =
⊕
j∈J
Hj.

Proof. First, we verify that π(s) maps H to itself. For v ∈ H and s ∈ S, we have that

‖π(s)v‖2 =
∑
j∈J

‖πj(s)vj‖2

≤
∑
j∈J

‖πj(s)‖2‖vj‖2

≤
∑
j∈J

sup
k∈J
‖πk(s)‖2‖vj‖2

= sup
k∈J
‖πk(s)‖2

∑
j∈J

‖vj‖2 <∞.
By virtue of each πj being a homomorphism, so too is π. Moreover, we see that

〈π(s)v,w〉 =
∑
j∈J

〈πj(s)vj, wj〉

=
∑
j∈J

〈vj, (πj(s))∗wj〉

=
∑
j∈J

〈vj, πj(s∗)wj〉

= 〈v, π(s∗)w〉

So (π(s))∗ = π(s∗).

1.9 Definition. The representation that combines (πj,Hj) as above is called the direct sum
representation and is denoted by

π =
⊕
j∈J

πj

1.10 Lemma (Decomposition of non-degenerate representations into cyclic components). Let
(π,H) be a representation of an involutive semigroup S and v ∈ H. Then π is cyclic when
restricted to span(π(S)v). Additionally, if π is non-degenerate, then v ∈ span(π(S)v).
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Proof. Let H1 = span(π(S)v). Then H1 is invariant under π(S) and so is H⊥1 ≡ H2 by our
characterization of invariant subspaces. Hence, we may write v ∈ H = H1 ⊕ H2 uniquely as
v = v1 + v2 where v1 ∈ H1 and v2 ∈ H2. So if s ∈ S we know

H2 3 π(s)v2 = π(s)(v− v1) = π(s)v− π(s)v1 ∈ H1 =⇒ π(s)v2 ∈ H1 ∩H2 = {0}.

Thus, π(s)v = π(s)v1, and v1 is a cyclic vector for H1. If the representation is non-degenerate,
then span(π(S)H) = H. So

{0} =
(
π(S)H

)⊥
=
(
(π(S))∗H

)⊥
= ker(π(S)) 3 v2

and v = v1 ∈ H1.

4


