Non-degenerate representations, finite dimensional representations, and representations with intertwining operators

Lecture Notes from September 27, 2022
taken by An Vu

Last Time
- Restricting a representation to make it non-degenerate
- Direct sum representations
- How to get cyclic representations

Warm up
Recall the Lemma on how to get cyclic representations from last time:

0.0 Lemma. Take \(v \in \mathcal{H} \) and restrict \(\pi \) to \(\mathcal{H}_v := \text{span} \, \pi(S)v \), then \(\pi \) is cyclic when restricted to \(\mathcal{H}_v \), and if \(\pi \) is non-degenerate, we have \(v \in \mathcal{H}_v \).

We now compare the above Lemma with the semigroup representation

\[
\pi : \mathbb{N} \to B(l^2), \\
\pi(1) = S^*,
\]

where \(S^* \) is the right shift function. We see that, with this example, we ignore the involution condition \(\pi(s^*) = (\pi(s))^*, s \in S \), since

\[
(\pi(1))^* = (S^*)^* \neq S^* := \pi(1) = \pi(1^*).
\]

Thus, when we choose \(v = e_1 \), we have \(\pi(n)e_1 = e_{1+n} \), so

\[
\pi(N)e_1 = \{e_{1+n} : n \in \mathbb{N}\} = \{e_m : m \geq 2\},
\]

which implies \(\mathcal{H}_{e_1} := \text{span} \, \pi(N)e_1 \) is the orthogonal complement of \(e_1 \), \(\{e_1\}^\perp \). Since \(\mathcal{H}_{e_1} \) contains elements starting with at least one zero, we see that \(e_1 \notin \mathcal{H}_{e_1} \), and \(\pi \) restricted to \(\mathcal{H}_{e_1} \) has an invariant subspace \(\mathcal{H}' : \{x \in l^2 : x_1 = x_2 = 0\}, \mathcal{H}' \neq \{e_1\}^\perp \) (specifically, \(\mathcal{H}' \subset \{e_1\}^\perp \)), and \(\mathcal{H}' \neq \{0\} \), meaning \(\pi \) restricted to \(\mathcal{H}_{e_1} \) is not irreducible.
1 Non-degenerate Representations

We begin by restating Zorn’s Lemma, to be used as the main proof device for the theorem in this section:

1.1 Lemma. Suppose a partially ordered set P has the property that every chain in P has an upper bound in P. Then the set P contains a maximal element.

1.2 Theorem. The representation π of an involutive semigroup S is non-degenerate if and only if π is the direct sum of cyclic representations.

Proof. Let π be non-degenerate. Since $\mathcal{H} = \overline{\text{span} \pi(S)\mathcal{H}}$, there is a $0 \neq v \in \mathcal{H}$ for which $H_v := \overline{\text{span} \pi(S)v} \neq 0$.

Let M be the set of all families $\{H_j\}_{j \in J}$ such that $H_j \perp H_k$ if $j \neq k$, and each H_j is a closed subspace. We observe that, because there is a non-zero $v \in \mathcal{H}$ so that H_v is nontrivial, by the assumption that π is non-degenerate, M is not zero, and there is a partial ordering on M: Let $K := (K_m), m \in \mathbb{N}$ be a chain in $M, K_m := \{H_j^m\}, j \in J^m$. We say

$$K_n \leq K_{n+1}$$

if for any $H_v^m \in K_m, H_v^m \in K_{n+1}$. Then the upper bound for K is

$$U := \bigcup_m \{H_v^m : H_v^m \in K_m\}.$$

To see $U \in M$, take any two elements $H_v^n, H_i^m \in U$. Then there must be K_n and K_m so that $H_v^n \in K_n$ and $H_i^m \in K_m$. Without loss of generality, assume $K_m \leq K_n$, then $H_i^m \in K^n$ and thus $H_i^m \perp H_v^n$, so U is an element in M.

Now, since every chain K has an upper bound in M, Zorn’s lemma gives us a maximal element $\{H_j\}_{j \in J_{\text{max}}}$. Letting $H_1 = \sum_{j \in J_{\text{max}}} H_j$, then H_1^\perp is an invariant subspace (by Lemma from September 22). If $H_1 \neq \mathcal{H}$, then since π is non-degenerate, there is $0 \neq v \in H_1^\perp$ such that $H' := \overline{\text{span} \pi(S)v} \neq 0$, and $\{H'\}$ and $\{H_j\}_{j \in J_{\text{max}}}$ form an orthogonal family of closed subspaces, contradicting the maximality assumption. Therefore, the subspace associated with the maximal element in M, H_1, exhausts the whole space \mathcal{H}, i.e. $H_1 = \mathcal{H}$, and $H_1^\perp = \{0\}$.

Conversely, if (π, \mathcal{H}) is a direct sum of cyclic representations (π_j, H_j), then $\sum_{j \in J} H_j$ is dense in \mathcal{H}. Since each representation π_j is cyclic,

$$H_j \subset \overline{\text{span} \pi(S)H_j} \subset \overline{\text{span} \pi(S)\mathcal{H}}.$$

Thus,

$$\sum_{j \in J} H_j \subset \overline{\text{span} \pi(S)\mathcal{H}}.$$

Since $\overline{\text{span} \pi(S)\mathcal{H}}$ is closed and $\sum_{j \in J} H_j$ is dense in \mathcal{H}, $\overline{\text{span} \pi(S)\mathcal{H}} = \mathcal{H}$, so S is non-degenerate.
2 Finite Dimensional Representations

2.1 Theorem. Each finite dimensional representation π of an involutive semigroup S is a direct sum of irreducible representations.

Proof. If (π, \mathcal{H}) is irreducible, we have nothing to show.
Otherwise, there is a reducible subspace $\mathcal{H}_1, \mathcal{H}_1 \neq 0, \mathcal{H}_1 \neq \mathcal{H}$ which is invariant. We obtain $\mathcal{H} = \mathcal{H}_1 \oplus \mathcal{H}_1^\perp$ where both subspaces are invariant and have dimensions less than dimension of \mathcal{H}.

Next, we argue with induction over the dimension of \mathcal{H}:
For $\dim \mathcal{H} = 1$, π is irreducible since either \mathcal{H}_1 or \mathcal{H}_1^\perp has to be $\{0\}$ or \mathcal{H}.
If $\dim \mathcal{H} > 1$, splitting $\mathcal{H} = \mathcal{H}_1 \oplus \mathcal{H}_1^\perp$ and applying induction hypothesis to subspaces \mathcal{H}_1 and \mathcal{H}_1^\perp gives that, each of these subspaces is a direct sum of subspaces on which π acts irreducibly. One can also envision a tree of splittings. After each split, we check if each summand is irreducible. If not, we keep splitting and checking irreducibility again. After an finite amount of splittings (since \mathcal{H} is of finite dimension), we must arrive at the irreducible representations. \square

3 Representations with intertwining operator

We first recall the definition of intertwining operators:

3.1 Definition. An operator $U \in \mathcal{B}(\mathcal{H}, \mathcal{H}')$ is called intertwining if, for two representations $(\pi, \mathcal{H}), (\pi', \mathcal{H}')$ of an involutive semigroup S,

$$U \circ \pi(s) = \pi'(s) \circ U$$

for all $s \in S$.

3.2 Lemma. Given a representation (π, \mathcal{H}) of a semigroup with involution S, $A \in \mathcal{B}(\mathcal{H})$ an intertwining operator, and

$$\mathcal{H}_\lambda(A) := \{v \in \mathcal{H} : Av = \lambda v\},$$

then $\mathcal{H}_\lambda(A)$ is invariant under S.

Proof. Using the above definition, for $v \in \mathcal{H}_\lambda(A), s \in S$

$$A(\pi(s)v) = \pi(s)Av = \pi(s)\lambda v = \lambda(\pi(s)v),$$

which implies that $\pi(s)v \in \mathcal{H}_\lambda(A)$, so $\mathcal{H}_\lambda(A)$ is invariant under S. \square

Next, we consider the case where S is abelian.

3.3 Theorem. If S is abelian, then each irreducible finite dimensional representation is one dimensional.
Proof. Consider $s \in S$ and $\pi(s)$. By \mathcal{H} being complex, the characteristic polynomial has at least one root, so there is an $\lambda \in \mathbb{C}$ such that $\mathcal{H}_\lambda(\pi(s)) \neq 0$.

Since S is abelian, $\pi(s)$ intertwines π, and by the above Lemma, $\mathcal{H}_\lambda(\pi(s))$ is invariant under S. By the irreducibility of π, $\mathcal{H}_\lambda(\pi(s)) := \{v \in \mathcal{H} : \pi(s)v = \lambda v\} = \mathcal{H}$, so

$$\pi(s) = \lambda \text{id}_\mathcal{H}.$$

We conclude that $\pi(S) \subset \mathbb{C} \text{id}_\mathcal{H}$, but π is irreducible, i.e. $\{0\}$ and $\mathcal{H}_\lambda(\lambda \text{id}_\mathcal{H})$ are the only closed subspaces that are invariant under $\pi(S)$, so there cannot be an orthogonal projection P so that $0 \neq P \neq \text{id}_\mathcal{H}$ with $P\pi(s) = \pi(s)P$ (by the Lemma on September 20), and hence $\dim \mathcal{H}$ must be 1, since if such P existed, then \mathcal{H} would be the direct sum of two nontrivial orthogonal subspaces, making $\dim \mathcal{H} \geq 2$. \[\square\]