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Last Time
e Restricting a representation to make it non-degenerate
e Direct sum representations

e How to get cyclic representations

Warm up
Recall the Lemma on how to get cyclic representations from last time:

0.0 Lemma. Take v € H and restrict m to H, := span 7(S)v, then 7 is cyclic when restricted
to H,, and if m is non-degenerate, we have v € H,,,.

We now compare the above Lemma with the semigroup representation
7 :N— B(I?),
(1) = 5",

where S* is the right shift function. We see that, with this example, we ignore the involution
condition 7(s*) = (7(s))*, s € S, since

(m(1))" = (87)" # 5" :=m(1) = =(17).
Thus, when we choose v = e;, we have w(n)e; = €14, SO
m(N)e; = {e11n :n € N} = {e,, : m > 2},

which implies H., := span m(N)e, is the orthogonal complement of e;, {e;}*. Since H,,
contains elements starting with at least one zero, we see that e; ¢ H,,, and 7 restricted to H,,
has an invariant subspace H' : {x € I? : 21 = 25 = 0}, H' # {e1}* (specifically, H' C {ei}1),
and H' # {0}, meaning 7 restricted to H., is not irreducible.
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1 Non-degenerate Representations

We begin by restating Zorn's Lemma, to be used as the main proof device for the theorem in this
section:

1.1 Lemma. Suppose a partially ordered set P has the property that every chain in P has an
upper bound in P. Then the set P contains a maximal element.

1.2 Theorem. The representation w of an involutive semigroup S is non-degenerate if and only
if 7 is the direct sum of cyclic representations.

Proof. Let m be non-degenerate. Since H = span m(S)H, there is a 0 # v € H for which
H, = span 7(S)v # 0.

Let M be the set of all families {#,};cs such that H; L H; if j # k, and each H; is a
closed subspace. We observe that, because there is a non-zero v € H so that H, is nontrivial,
by the assumption that 7 is non-degenerate, M is not zero, and there is a partial ordering on
M: Let K := (K,,),m € N be a chain in M, KC,,, := {H}'},j € J™. We say

ICn S ICn—i—l

if for any H)) € K,,, H}} € K,4+1. Then the upper bound for K is

U= {1y "y € Knl.

To see U € M, take any two elements H;}, H" € U. Then there must be K,, and K, so that
H! € K, and H* € K,,,. Without loss of generality, assume IC,,, < KC,,, then H* € K" and
thus H* L H}, so U is an element in M.

Now, since every chain I has an upper bound in M, Zorn’s lemma gives us a maximal
element {H,};e,.... Letting Hy = ZjEJmm H;, then Hi is an invariant subspace (by Lemma
from September 22). If H; # H, then since 7 is non-degenerate, there is 0 # v € Hi such
that H' := span w(S)v # 0, and {H'} and {#,;}c,... form an orthogonal family of closed
subspaces, contradicting the maximality assumption. Therefore, the subspace associated with
the maximal element in M, H;, exhausts the whole space H, i.e. H; = H, and H; = {0}.

Conversely, if (7, H) is a direct sum of cyclic representations (7, H;), then ZjGJ H; is dense
in H. Since each representation 7, is cyclic,

H,; C span 7(S)H; C span w(S)H.

Thus,
ZH]' C span w(S)H.

jeJ

Since span m(S)H is closed and >, ;H; is dense in Hy, span w(S)H = H, so S is non-
degenerate. O]



2 Finite Dimensional Representations

2.1 Theorem. Each finite dimensional representation w of an involutive semigroup S is a direct
sum of irreducible representations.

Proof. If (m,H) is irreducible, we have nothing to show.

Otherwise, there is a reducible subspace H;, H1 # 0,H; # H which is invariant. We obtain
H = H, ® Hi where both subspaces are invariant and have dimensions less than dimension of
H.

Next, we argue with induction over the dimension of H.:

For dimH = 1, 7 is irreducible since either H; or Hi has to be {0} or H.

If dimH > 1, splitting H = H, & Hi and applying induction hypothesis to subspaces H;
and Hi gives that, each of these subspaces is a dicrect sum of subspaces on which 7 acts
irreducibly. One can also envision a tree of splittings. After each split, we check if each summand
is irreducible. If not, we keep splitting and checking irreducibility again. After an finite amount of
splittings (since # is of finite dimension), we must arrive at the irreducible representations. [

3 Representations with intertwining operator

We first recall the definition of intertwining operators:

3.1 Definition. An operator U € B(H,H') is called intertwining if, for two representations
(m,H), (7', H") of an involutive semigroup S,

Uom(s)=m'(s)oU
forall s € S.

3.2 Lemma. Given a representation (7, H) of a semigroup with involution S, A € B(H) an
intertwining operator, and
Hi(A) :={veH: Av = v},

then H(A) is invariant under S.

Proof. Using the above definition, for v € H,(A),s € S

which implies that 7(s)v € H(A), so Hx(A) is invariant under S. O

Next, we consider the case where S is abelian.

3.3 Theorem. If S is abelian, then each irreducible finite dimensional representation is one
dimensional.



Proof. Consider s € S and 7(s). By H being complex, the characteristic polynomial has at least
one root, so there is a A € C such that #H,(7(s)) # 0.

Since S is abelian, 7(s) intertwines 7, and by the above Lemma, #H,(7(s)) is invariant under
S. By the irreducibility of m, Hx(7(s)) :={v € H : 7w(s)v = A} =H, so

7T(S) = )\ZdH

We conclude that 7(S) C Cidy, but 7 is irreducible, i.e. {0} and H,(\idy) are the only closed
subspaces that are invariant under 7(.S), so there cannot be an orthogonal projection P so that
0 # P # idy with Pm(s) = m(s)P (by the Lemma on September 20), and hence dim H must be
1, since if such P existed, then H would be the direct sum of two nontrivial orthogonal subspaces,
making dim H > 2. m
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