
Lecture Notes from September 27, 2022
taken by Lukasz Krzywon

Last time

• Restricting a representation to make it non-degenerate

• Direct sum representations

• How to get cyclic representations

Recall the following:

1.6 Lemma. Take v ∈ H, restrict π to Hv ∼= span π(S)v. The π is cyclic when restricted to
Hv. If π is non-degenerate then v ∈ Hv.

Warm up:

1.7 Question. What happens if S is not involutive?

Compare the lemma with the following example: π : N → B(l2). Where π(1) = S∗ is the
right shift.

Let v = e1. Then, π(n)v = e1+n. Thus, spanπ(S)v = {(0, x2, x3, ...)} = {e1}
⊥ = He1 ,

e1 /∈ {e1}
⊥. Also, π|He1

has infinitely many invariant subspaces. One of them is H2 = {x ∈ l2 :
x1 = x2 = 0}. H2 6= {e1}

⊥, and H2 6= {0}. Thus, π|He1
is not irreducible. Also, π|He1

can

be seen to not be cyclic. If we take w ∈ He1 then for all s ∈ S, π(s)w ⊂ H2. In particular,

e2 /∈ spanπ(S)w.
We now turn back to the case of representations of involutive semigroups and the linear

structure of nondegenerate representations.

1.8 Theorem. The representation of an involutive semigroup, S, is nondegenerate iff it is the
direct sum of cyclic representations.

Proof. Let the representation be non-degenerate. If it is not, we can ”make” it non-degenerate
by the first theorem of September 22. That is, we can remove, in the sense of direct sums, the
intersection of the kernels of π(s) for each s ∈ S.

Since our representation is nondegenerate, H = span π(S)H, so there exists a vector v ∈ H
for which span π(S)v is not zero. We are looking to apply Zorn’s Lemma as a countable process
need not ”exhaust” the Hilbert Space H. Let M be the set of all indexed families of closed
mutually orthogonal cyclic subspaces of H that are invariant under π. That is, M is the set of
{Hj}j∈J such that Hj ⊥ Hk for k 6= j, each Hj is a closed subspace, is cyclic, and is invariant
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under π. We can define a partial order on M by A1 < A2 if A1 ⊂ A2. Here we are saying that
if Hj ∈ A1 then Hj ∈ A2. We note that for each chain, K = (Km), K =

⋃
m{Hj : Hj ∈ Km} is

an upper bound. This follows from its construction. If Hj ∈ Km for any m ∈ N, then Hj ∈ K.
Hence, Km < K for all m ∈ N. If Hj and Hk are in K then there is an m ∈ N that contain
them both. Thus, if Hj 6= Hk, Hj ⊥ Hk. Also, for the same reason, these Hj are cyclic and
invariant under π, which shows K is indeed an element of M. Thus, by Zorn’s Lemma, there
exists a maximal element A ∈ M. By maximal we mean, if A < B for some B ∈ M then
B = A. Denote A = {Hj}j∈Jmax . Let H1 =

∑
j∈Jmax

Hj. Each Hj is an invariant subspace, so
H1 is invariant. This took me ten minutes of thinking before I concluded it was obvious. If you
are like me then let me spare you some of those minutes. If w ∈ H1 then there exists a sequence
wi in

∑
j∈Jmax

Hj converging to w. Thus, for any s ∈ S, π(s)wi ∈
∑

j∈Jmax
Hj for all i by the

invariance of each Hj and the linearity of π(s). By the continuity of π(s), π(s)wi converges to

π(s)w. Hence, π(s)w ∈
∑

j∈Jmax
Hj. Then, H⊥1 is an invariant subspace. If H1 6= H, then

there exists a nonzero v ∈ H⊥1 . Let Hc = span π(S)v. This closed subspace is invariant and
cyclic by construction. Thus, {Hc}

⋃
{Hj}j∈Jmax is an orthogonal family of closed, invariant, cyclic

subspaces that properly contains A. This contradicts Zorn’s lemma. Therefore, H1 = H.
Conversely, if (π,H), is a direct sum of cyclic representations, (πj,Hj), then

∑
j∈J Hj is

dense in H. The representation of each πj is cyclic, so

Hj ⊂ span π(S)Hj ⊂ span π(S)H.

Hence, if we sum over j and take the closure, we obtain

H =
∑
j∈J

Hj ⊂
∑
j∈J

span π(S)Hj ⊂
∑
j∈J

span π(S)H = span π(S)H ⊂ H.

Relying on the the maxim H = H, we have shown H = span π(S)H, so H is nondegenerate.

Having done the ’hard’ work of unrestricted dimensions, we now turn to the finite dimensional
case. In this setting we will arrive at direct sums of irreducible representations, which is a stronger
condition than cyclic.

1.9 Remark. A nontrivial irreducible representation of an involutive semigroup is cyclic, but a
cyclic representation need not be irreducible.

Proof. Suppose we have a nontrivial irreducible representation (π,H) of an involutive semigroup
S. That is, the only invariant subspaces of π are {0} and H and there exists an s ∈ S and a
v ∈ H such that π(s)v 6= 0. Then, W = span π(S)v = H. This follows from the fact that W is
a nonzero closed subspace of H that is invariant under π. However, given A = [e3, e1, e2], the
set {I, A,A2} is a cyclic representation of Z3 in H = R3. It is cyclic under e1 because for any
w ∈ H, w = w1Ie1 +w2A

2e1 +w3Ae1. It is not irreducible because the line in R3 defined by
{av : a ∈ R, v = (1, 1, 1)t} is invariant under π because Av = v.
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1.10 Theorem. Each finite dimensional representation of an involutive semigroup, S, is a direct
sum of irreducible representations.

Proof. If (π,H) is irreducible, there is nothing to prove.
Suppose (π,H) is not irreducible. Then, there exists an invariant subspace H1, such that

H1 6= {0} and H1 6= H. We also have that H⊥1 is invariant by the Lemma from September 20,
and H = H1

⊕
H⊥1 .

We are now ready to argue with induction over dimH. If dimH = 1 then π is irreducible. If
dimH > 1 we can split the Hilbert spaceH = H1

⊕
H⊥1 into two subspaces each with dimension

at least 1 and at most dimH−1. We now ask if H1 and H⊥1 are irreducible. If either of them are
not, we can again split, which will again reduce the dimension by at least 1. Since dimH is finite,
this process will eventually terminate with a direct sum of prime irreducible subspaces. Restricting
π to each of these irreducible subspaces forms the direct sum of irreducible representations.

We continue towards a description of the structure of the irreducible representations. First, a
lemma.

1.11 Lemma. Given a representation of an involutive semigroup, S, and an intertwining operator
A ∈ B(H) an intertwining operator, the closed subspaceHλ(A) = {v ∈ H : Av = λv} is invariant
under S.

Proof. For v ∈ Hλ(A), and s ∈ S,

Aπ(s)v = π(s)Av = λπ(s)v.

Hence, π(s)v ∈ Hλ(A), so Hλ(A) is invariant under S.

We are now prepared to describe the irreducible representations of abelian involutive semi-
groups.

1.12 Theorem. If S is abelian, then each irreducible finite representation is 1-dimensional.

Proof. Let s ∈ S. Then, the operator π(s) has a characteristic polynomial, which, since H is
complex, has at least one root. Thus, there exists a λ ∈ C such that Hλ(π(s)) 6= {0}. Since S
is abelian, π(s) intertwines and hence Hλ(π(s)) is invariant under π. By the irreducibility of π,
Hλ(π(s)) = H so π(s) = λIdH. We conclude π(S) ⊂ CIdH.

If the dimension of H is greater than one, then we can take a v 6= 0 ∈ H and form a one
dimensional subspace of H by span(v) = V . However, for any s ∈ S, π(s)v = λv, so V is
invariant under π. But V is one dimensional and H is not, which contradicts the irreducibility of
π. Therefore, the dimension of H is one.
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