Lecture Notes from September 29, 2022

taken by Caleb Barnett

Last Time

- π is non-degenerate iff π is the direct sum of cyclic representations.
- Irreducible finite-dimensional representations of abelian semigroups.

Warm up:

1.0 Question. Consider the semigroup $S=\{0,1\}$ with multiplication. Let $s^{*}=s$. Given a representation (π, \mathcal{H}) with $\operatorname{dim} \mathcal{H}=\mathrm{n}$, how many different representations are there up to unitary equivalence?

We know $\pi(1)=\mathcal{P}$, an orthogonal projection, by $\pi(1)\left(\pi(1)^{*}\right)=\pi\left(11^{*}\right)=\pi(1)$. If π is non-degenerate, we claim that \mathcal{P} is onto, i.e. $\mathcal{P}=\operatorname{id}_{\mathcal{H}}$. Since \mathcal{H} is finite-dimensional, the claim follows from

$$
\overline{\pi(S)(\mathcal{H})}=\pi(S)(\mathcal{H})=\pi(1) \pi(\mathrm{S})(\mathcal{H})=\mathcal{P} \pi(\mathrm{S})(\mathcal{H})=\mathcal{P}(\mathcal{H}) .
$$

And from $0=00^{*}$, we also know that $\pi(0)$ is an orthogonal projection.
In the degenerate case, we have $\mathcal{P}=\pi(1)$ is an orthogonal projection onto some subspace of \mathcal{H}, and $\mathcal{Q}=\pi(0)$ is an orthogonal projection onto a subspace of $\pi(1)(\mathcal{H})$.

Up to unitary equivalence, there is only one orthogonal projection onto a subspace of dimension k for each $\mathrm{k} \leq \mathrm{n}$. So for each projection \mathcal{P} of dimension k, there are $\mathrm{k}+1$ choices of \mathcal{Q}.
1.1 Answer. Hence, the number of distinct representations up to unitary equivalence is given by the following sum:

$$
\sum_{k=0}^{n}(k+1)=\frac{(n+1)(n+2)}{2}
$$

Characters of Semigroups

1.2 Definition. A representation $\pi: S \rightarrow \mathcal{B}(\mathbb{C}) \cong \mathbb{C}$ is called a character of S, and we write \widehat{S}_{0} for all such characters, and $\widehat{S} \equiv \widehat{S}_{0} \backslash\{0\}$.

We recall the following two results from the lecture on September 29.
1.3 Theorem. Each finite dimensional representation π of an involutive semigroup S is a direct sum of irreducible representations.
1.4 Theorem. If S is abelian, then each irreducible finite-dimensional representation is onedimensional.

Now we can prove the following decomposition theorem.
1.5 Theorem. Let (π, \mathcal{H}) be a finite-dimensional representation of an abelian involutive semigroup S . For $\chi \in \widehat{\mathrm{S}}$, we let

$$
\mathcal{H}_{\chi}=\{v \in \mathcal{H}:(\forall s \in S) \pi(s) v=\chi(s) v\}
$$

then $\mathcal{H}=\underset{x \in \hat{S}}{\oplus} \mathcal{H}_{\chi} .\left(\right.$ Note that at most finitely many $\mathcal{H}_{x} \neq\{0\}$.)
Proof. From Theorems 1.3 and 1.4, we know that each finite-dimensional representation is a direct sum of irreducible representations, and we also know that each irreducible representation of an abelian semigroup is one-dimensional.

We employ some arguments from the proof of Theorem 1.4.
Consider one of these one-dimensional representations $\left(\pi_{j}, \mathcal{H}_{j}\right)$. Then for any $\pi_{j}(s)$, there is a $\lambda_{s} \in \mathbb{C}$ and $v \in \mathcal{H}_{j}$ (spanning this space) such that $\pi_{j}(s) v=\lambda_{s} v$. Define the character $\chi_{j}: S \rightarrow \mathcal{B}(\mathbb{C})$ by $\chi_{j}(s)=\lambda_{s} \mathrm{id}_{\mathcal{H}_{j}}$. Then $\pi_{\mathfrak{j}}(s) v=\chi_{j}(s) v$ for all $s \in S$. And since v spans \mathcal{H}_{j}, $\pi_{\mathrm{j}}(\mathrm{s}) v=\chi_{\mathrm{j}}(\mathrm{s}) v$ for all $v \in \mathcal{H}_{\mathrm{j}}$. Therefore, $\mathcal{H}_{\mathrm{j}}=\mathcal{H}_{\chi_{j}}$.

Hence, $\mathcal{H}=\underset{\mathrm{j} \in \mathrm{J}}{\oplus} \mathcal{H}_{\mathrm{j}}=\underset{\mathrm{j} \in \mathrm{J}}{\oplus} \mathcal{H}_{\mathrm{x}_{\mathrm{j}}}=\underset{x \in \hat{\mathrm{~S}}}{\oplus} \mathcal{H}_{\chi}$.
We conclude with a classification result, which
1.6 Theorem. Let S be an abelian involutive semigroup, then each finite-dimensional representation (π, \mathcal{H}) has a multiplicity function

$$
\begin{gathered}
\mathfrak{n}_{\pi}: \widehat{S} \rightarrow \mathbb{N} \cup\{0\} \\
\chi \mapsto \operatorname{dim} \mathcal{H}_{x}
\end{gathered}
$$

and

1. two representations (π, \mathcal{H}) and $\left(\pi^{\prime}, \mathcal{H}^{\prime}\right)$ are equivalent iff n_{π} and $\mathrm{n}_{\pi}^{\prime}$ are identical,
2. if $\mathfrak{n}: \widehat{S} \rightarrow \mathbb{N} \cup\{0\}$ is non-vanishing for finitely many χ, then there is (π, \mathcal{H}) with $\mathfrak{n}_{\pi}=\mathfrak{n}$.

Proof.

1. (\Rightarrow) If (π, \mathcal{H}) and $\left(\pi^{\prime}, \mathcal{H}^{\prime}\right)$ are equivalent, then there is a unitary $\mathcal{U}: \mathcal{H} \rightarrow \mathcal{H}^{\prime}, \mathcal{U}(\mathcal{H})=\mathcal{H}^{\prime}$, and for any character $\chi \in \widehat{S}, \mathcal{U}\left(\mathcal{H}_{\chi}\right)=\mathcal{H}_{\chi}^{\prime}$, because if $v \in \mathcal{H}_{\chi}, s \in S$,

$$
\pi^{\prime}(s) \mathcal{U} v=\mathcal{U} \pi(s) v=\mathcal{U} \chi(s) v=\chi(s) \mathcal{U} v
$$

so $\mathcal{U} v \in \mathcal{H}_{\chi}^{\prime}$.
Conversely, given $\nu^{\prime} \in \mathcal{H}_{\chi}^{\prime}$, then

$$
\pi(s) \mathcal{U}^{*} v^{\prime}=\mathcal{U}^{*} \pi^{\prime}(s) v^{\prime}=\mathcal{U}^{*} \chi(s) v^{\prime}=\chi(s) \mathcal{U}^{*} v^{\prime}
$$

Hence $\mathcal{U}^{*} \nu^{\prime} \in \mathcal{H}_{\chi}$. Since $\mathcal{U}^{*}=\mathcal{U}^{-1}$, this establishes $\mathcal{U}\left(\mathcal{H}_{\chi}\right)=\mathcal{H}_{\chi}^{\prime}$ and consequently, $n_{\pi}(\chi)=\operatorname{dim} \mathcal{H}_{\chi}=\operatorname{dim} \mathcal{H}_{\chi}^{\prime}=n_{\pi}^{\prime}(\chi)$.
(\Leftarrow) Conversely, given two representations and for each $\chi \in \widehat{S}, \mathcal{H}_{\chi}$ and $\mathcal{H}_{\chi}^{\prime}$ have the same dimension, then they are isomorphic. Consider the isomorphism $\mathcal{U}_{x}: \mathcal{H}_{x} \rightarrow \mathcal{H}_{x}^{\prime}$. Then \mathcal{U}_{x} intertwines $\left.\pi\right|_{\mathcal{H}_{x}}$ and $\left.\pi\right|_{\mathcal{H}_{\dot{x}}^{\prime}}$.
Next, let $\mathcal{U}: \mathcal{H} \rightarrow \mathcal{H}^{\prime},\left.\mathcal{U}\right|_{\mathcal{H}_{x}}=\mathcal{U}_{x}$, then \mathcal{U} intertwines π and π^{\prime} on the direct sum spaces \mathcal{H} and \mathcal{H}^{\prime}. Thus, π and π^{\prime} are equivalent.
2. Given n as described, let $\mathcal{H}_{x}=\mathbb{C}^{n(x)}$ and define π_{x} on \mathcal{H}_{x} by

$$
\pi_{\chi}(s)=\chi(s) \operatorname{id}_{\mathcal{H}_{\chi}} .
$$

Since n is only nonzero for finitely many $\chi, \oplus \pi_{\chi}$ defines a finite-dimensional representation with multiplicity function n.
1.7 Remark. The above theorem extends the statement "All Hilbert spaces of the same dimension are unitarily equivalent" to equivalence of representations when the dimension of subspaces \mathcal{H}_{χ} are equivalent.

