
Lecture Notes from October 4, 2022
taken by Jessie McKim

Last time

• Characterization of representations of abelian semigroups

Warm up:
Given G = Z (additive) and s∗ = −s, show

Ĝ ∼= S1 = {z ∈ C : |z| = 1}

To see this, suppose there is a homomorphism χ : G 7→ C and it is not identically zero. Then we
know χ(0) is an orthonormal projection so χ(0) ∈ {0, 1} but then by χ not identically zero and

χ(n) = χ(n+ 0) = χ(0)χ(n)

we have χ(0) = 1 and otherwise trivial.
We also know

χ(n) =

{
(χ(1))n if n ∈ N0

(χ(1)∗)n if n < 0

Now let z = χ(1) then

(χ(1))∗(χ(1)) = (χ(−1))(χ(1)) = χ(−1+ 1) = χ(0) = 1

This implies that z̄z = 1, so |z| = 1

Hence, every χ is characterized by χ(1) = z ∈ S1

Conversely given any z ∈ S, assigning χ(1) = z yields a character on S.
Moreover, if S = (N0,+), and s = s∗ then Ŝ0 = R.
And if S = (N0 × N0,+), with (n,m)∗ = (m,n)∗ then Ŝ0 = C

We’ll conclude the warm up with a spectral theorem for normal operators on finite dimensional
Hilbert Spaces.

1.1 Theorem. Let dimH < ∞. An operator A ∈ B(H) is normal if and only if

H =
⊕
λ

Hλ

where λ denumerates the eigenvalues of A.
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Proof. If A is normal then we define an involutive semigroup representation for S = {(n,m) :
n,m ∈ N0} with (n,m)∗ = (m,n) by π(n,m) = An(A∗)m

Since S is abelian, the representation decomposes into a direct sum of one-dimensional ones
on invariant subspaces that are mutually orthogonal.

Hence, A is diagonalizable and the eigenspaces of A are the invariant subspaces.
Conversely, if H is a direct sum of eigenspaces for A, taking v ∈ Hλ so Av = λv then gives

A|span{v} = λidspan{v} so A∗|span{v} = λ̄idspan{v}

So on each eigenspace, the restriction of A and A∗ commute so by the direct sum decompo-
sition, AA∗ = A∗A and hence A is normal.

1.2 Definition. A complex vector space A with a map A × A 7→ A, (x, y) 7→ xy is called an
(associative) algebra if (xy)z = x(yz) for each x, y, z ∈ A

An element 1 is called a unit if 1a = a1 = a for each a ∈ A

If A has a unit, then an element a ∈ A is called invertible if there is b ∈ A such that
ab = ba = 1. We can show that the inverse b is unique by supposing it is not unique and
showing this leads to a contradiction.

Let there be a, b, c ∈ A such b, c are each the inverse of a and b ̸= c then we have
ab = ba = 1 and ac = ca = 1. This gives us that

ab = ac

ab− ac = 0

a(b− c) = 0, ∀a ∈ A

b− c = 0

b = c

and thus we have a contradiction, and therefore b is unique. We then say b is the inverse of
a and b = a−1

The set G(A) of invertible elements forms a group with unit 1.
An algebra A which is a Banach space is called a Banach algebra is ||ab|| ≤ ||a||||b|| for

a, b ∈ A

1.3 Lemma. Multiplication in a Banach algebra is continuous.

Proof. Let an → a, bn → b,

||anbn − ab|| = ||anbn − abn + abn − ab||

≤ ||anbn − abn||+ ||abn − ab||

≤ ||an − a||︸ ︷︷ ︸→0

||bn||︸︷︷︸
stays bounded

+||a|| ||bn − b||︸ ︷︷ ︸→0

and by (||bn||)
∞
n=1 being bounded, we get ||anbn − ab|| → 0

1.4 Definition. 1. An involutive algebra A is an (associative) complex algebra for which there
is a representation a 7→ a∗ such that for each a, b ∈ A, and λ, µ ∈ C

2



(a) (a∗)∗ = a

(b) (λa+ µb)∗ = λ̄a∗ + µ̄b∗

(c) (ab)∗ = b∗a∗

2. If (A, || · ||) is a Banach algebra with involution and ||a∗|| = ||a|| for each a ∈ A, then we
say that A is a Banach-∗-algebra.
If it is even true that for each a ∈ A, ||aa∗|| = ||a||2, then this is called a C∗-algebra.

3. If (A, ∗) is an involutive algebra, then Â is the set of non-zero homomorphisms of A to C.
If A is a Banach-∗-algebra, then we write Â for the continuous non-zero homomorphisms.

4. An element a ∈ A, with A an involutive algebra, is called

(a) normal if aa∗ = a∗a

(b) Hermitian if a = a∗

(c) orthogonal projection if aa∗ = a

1.5 Remark. If H is a complex Hilbert space, then closed subset A ⊂ B(H) forms an algebra
with adjoint as an involution a 7→ a∗

(i.e. A∗ ⊂ A) then A is a C∗-algebra.
In particular, B(H) is a C∗-algebra. This is the case because on B(H), we had shown

||a∗a|| = ||a||2 = ||a∗||2, for each a ∈ B(H)
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