Lecture Notes from October 4, 2022

taken by Jessie McKim

Last time

• Characterization of representations of abelian semigroups

Warm up:

Given $G = \mathbb{Z}$ (additive) and $s^* = -s$, show

$$\widehat{\mathsf{G}} \cong \mathsf{S}^1 = \{z \in \mathbb{C} : |z| = 1\}$$

To see this, suppose there is a homomorphism $\chi : G \mapsto \mathbb{C}$ and it is not identically zero. Then we know $\chi(0)$ is an orthonormal projection so $\chi(0) \in \{0, 1\}$ but then by χ not identically zero and

 $\chi(n) = \chi(n+0) = \chi(0)\chi(n)$

we have $\chi(0) = 1$ and otherwise trivial. We also know

$$\chi(\mathfrak{n}) = \begin{cases} (\chi(1))^{\mathfrak{n}} & \text{if } \mathfrak{n} \in \mathbb{N}_0\\ (\chi(1)^*)^{\mathfrak{n}} & \text{if } \mathfrak{n} < 0 \end{cases}$$

Now let $z = \chi(1)$ then

$$(\chi(1))^*(\chi(1)) = (\chi(-1))(\chi(1)) = \chi(-1+1) = \chi(0) = 1$$

This implies that $\bar{z}z = 1$, so |z| = 1Hence, every χ is characterized by $\chi(1) = z \in S^1$ Conversely given any $z \in S$, assigning $\chi(1) = z$ yields a character on S. Moreover, if $S = (\mathbb{N}_0, +)$, and $s = s^*$ then $\hat{S}_0 = \mathbb{R}$. And if $S = (\mathbb{N}_0 \times \mathbb{N}_0, +)$, with $(n, m)^* = (m, n)^*$ then $\hat{S}_0 = \mathbb{C}$

We'll conclude the warm up with a spectral theorem for normal operators on finite dimensional Hilbert Spaces.

1.1 Theorem. Let dim $\mathcal{H} < \infty$. An operator $A \in \mathcal{B}(\mathcal{H})$ is normal if and only if

$$\mathcal{H} = igoplus_{\lambda} \mathcal{H}_{\lambda}$$

where λ denumerates the eigenvalues of A.

Proof. If A is normal then we define an involutive semigroup representation for $S = \{(n, m) : n, m \in \mathbb{N}_0\}$ with $(n, m)^* = (m, n)$ by $\pi(n, m) = A^n (A^*)^m$

Since S is abelian, the representation decomposes into a direct sum of one-dimensional ones on invariant subspaces that are mutually orthogonal.

Hence, A is diagonalizable and the eigenspaces of A are the invariant subspaces.

Conversely, if \mathcal{H} is a direct sum of eigenspaces for A, taking $\nu \in \mathcal{H}_{\lambda}$ so $A\nu = \lambda\nu$ then gives $A|_{span\{\nu\}} = \lambda id_{span\{\nu\}} = \delta id_{span\{\nu\}} = \bar{\lambda} id_{span\{\nu\}}$

So on each eigenspace, the restriction of A and A^* commute so by the direct sum decomposition, $AA^* = A^*A$ and hence A is normal.

1.2 Definition. A complex vector space A with a map $A \times A \mapsto A$, $(x, y) \mapsto xy$ is called an (associative) algebra if (xy)z = x(yz) for each $x, y, z \in A$

An element 1 is called a unit if 1a = a1 = a for each $a \in A$

If A has a unit, then an element $a \in A$ is called invertible if there is $b \in A$ such that ab = ba = 1. We can show that the inverse b is unique by supposing it is not unique and showing this leads to a contradiction.

Let there be $a, b, c \in A$ such b, c are each the inverse of a and $b \neq c$ then we have ab = ba = 1 and ac = ca = 1. This gives us that

$$ab = ac$$

$$ab - ac = 0$$

$$a(b - c) = 0, \quad \forall a \in A$$

$$b - c = 0$$

$$b = c$$

and thus we have a contradiction, and therefore b is unique. We then say b is the inverse of a and $b = a^{-1}$

The set G(A) of invertible elements forms a group with unit 1.

An algebra A which is a Banach space is called a Banach algebra is $\|ab\| \leq \|a\| \|b\|$ for $a,b \in A$

1.3 Lemma. Multiplication in a Banach algebra is continuous.

Proof. Let $a_n \to a, b_n \to b$,

$$\begin{split} \|a_n b_n - ab\| &= \|a_n b_n - ab_n + ab_n - ab\| \\ &\leq \|a_n b_n - ab_n\| + \|ab_n - ab\| \\ &\leq \underbrace{\|a_n - a\|}_{\rightarrow 0} \underbrace{\|b_n\|}_{\text{stays bounded}} + \|a\| \underbrace{\|b_n - b\|}_{\rightarrow 0} \end{split}$$

and by $(\|b_n\|)_{n=1}^\infty$ being bounded, we get $\|a_nb_n-ab\|\to 0$

1.4 Definition. 1. An involutive algebra A is an (associative) complex algebra for which there is a representation $a \mapsto a^*$ such that for each $a, b \in A$, and $\lambda, \mu \in \mathbb{C}$

- (a) $(\mathfrak{a}^*)^* = \mathfrak{a}$
- (b) $(\lambda a + \mu b)^* = \overline{\lambda} a^* + \overline{\mu} b^*$
- (c) $(ab)^* = b^*a^*$
- 2. If $(A, \|\cdot\|)$ is a Banach algebra with involution and $\|a^*\| = \|a\|$ for each $a \in A$, then we say that A is a Banach-*-algebra.

If it is even true that for each $a \in A$, $||aa^*|| = ||a||^2$, then this is called a C^{*}-algebra.

- 3. If (A, *) is an involutive algebra, then \hat{A} is the set of non-zero homomorphisms of A to \mathbb{C} . If A is a Banach-*-algebra, then we write \hat{A} for the continuous non-zero homomorphisms.
- 4. An element $a \in A$, with A an involutive algebra, is called
 - (a) normal if $aa^* = a^*a$
 - (b) Hermitian if $a = a^*$
 - (c) orthogonal projection if $aa^* = a$

1.5 Remark. If \mathcal{H} is a complex Hilbert space, then closed subset $A \subset \mathcal{B}(\mathcal{H})$ forms an algebra with adjoint as an involution $a \mapsto a^*$

(i.e. $A^* \subset A$) then A is a C*-algebra.

In particular, $\mathcal{B}(\mathcal{H})$ is a C*-algebra. This is the case because on $\mathcal{B}(\mathcal{H})$, we had shown $||a^*a|| = ||a||^2 = ||a^*||^2$, for each $a \in \mathcal{B}(\mathcal{H})$