
Lecture Notes from October 10, 2022
taken by Nick Fularczyk

Last time

• characterization of representations of abelian semigroups

Warm up:

1.6 Question. Given G = (Z,+) and s∗ = −s, then show

Ĝ ∼= S1 = {z ∈ C : |z| = 1}

To see this, assume χ : G 7→ C is a character. Then, we know that

χ(0) = [χ(0)]∗χ(0),

so χ(0) ∈ {0, 1}. Moreover, χ(n) = χ(n+0) = χ(0)χ(n) for each n ∈ Z, and χ is not identically
zero by definition of a character. Hence, χ(0) = 1. Furthermore,

χ(n) =

{
[χ(1)]n n ∈ N0
[χ(1)∗]n n < 0

and (χ(1))∗χ(1) = χ(0). Therefore, if we let z = χ(1), we see that zz = 1, so |z| = 1. Hence,
every χ is characterized by χ(1) = z ∈ S1. Conversely, given any z ∈ S1 assigning χ(1) = z

yields a character on G.

1.7 Question. Given S = (N0,+) and s∗ = s, then show that Ŝ0 ∼= R
Note, if χ ∈ Ŝ0 is the zero homomorphism then we can identify χ with the real number zero.

So, assume χ : S 7→ C is a character. Using similar techniques as in the previous question, we
can show that χ(0) = 1 and χ(n) = [χ(1)]n for each n ∈ N0. Furthermore,

χ(n) = χ(n∗)

= χ(n)∗

for each n ∈ N0. Therefore, if we let z = χ(1), then z = z ∈ R. Conversely, given any a ∈ R
assigning χ(n) = an for each n ∈ N0 yields a homomorphism in Ŝ0.

1.8 Question. Given S = (N0 × N0,+) and (n,m)∗ = (m,n), then show that Ŝ0 ∼= C
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Assume χ : S 7→ C is a character. Since χ is not identically zero, we can show that χ((0, 0)) =
1. It now follows from the lecture notes on September 20, 2022 that χ((1, 0)) determines the
representation/character. Therefore, every χ is characterized by χ((1, 0)) = z ∈ C/{0}. As in
the previous question, we identify the zero homomorphism with zero. Conversely, we can show
that if we are given z ∈ C that setting χ((m,n)) = zmzn for each m,n ∈ N0 determines a
homomorphism in Ŝ0.

We conclude with a spectral theorem for normal operators on finite dimensional Hilbert spaces.

1.9 Theorem. LetH be a complex Hilbert space such that dimH <∞. An operator A ∈ B(H)
is normal if and only if H =

⊕
λ

Hλ where λ denumerates the eigenvalues of A

Proof. If A is normal, then we define an involutive semigroup representation for

S = {(n,m) : n,m ∈ N0}

with (n,m)∗ = (m,n) by
π(n,m) = An(A∗)m.

Since S is abelian, the representation decomposes into a direct sum of one-dimensional ones on
invariant subspaces that are mutually orthogonal. Hence, A is diagonalizable and the eigenspaces
of A are invariant subspaces.
Conversely, if H is a direct sum of eigenspaces for A, taking v ∈ Hλ, i.e. Av = λv, then by
A|span{v} = λidspan{v}, we have A∗|span{v} = λidspan{v}. On each eigenspace, the restriction of A
and A∗ commute, so by direct sum decomposition, AA∗ = A∗A. Hence, A is normal.

2 Banach algebras and Spectral Theory

2.1 Definition. 1. A complex vector space A with a map A×A 7→ A, (x, y) 7→ xy is called
an (associative) algebra if (xy)z = x(yz) for each x, y, z ∈ A.

2. Let A be an algebra. An element 1 is called a unit if 1a = a1 = a for each a ∈ A.

3. Let A be an associative algebra with a unit. An element a ∈ A is called invertible if there
is b ∈ A such that ab = ba = 1. In that case, the inverse is unique. We then say b is
the inverse of a, b = a−1.

4. An algebra A which is a Banach space is called a Banach algebra if ‖ab‖ ≤ ‖a‖‖b‖ for
a, b ∈ A.

2.2 Remark. The set G(A) of invertible elements forms a group with unit 1.

2.3 Claim. Let A be an associative algebra with a unit. If a ∈ A is invertible then the inverse
is unique.
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Proof. Suppose a is invertible and that b1 and b2 are inverses of A. Observe that,

b1 = b11

= b1(ab2)

= (b1a)b2

= 1b2

= b2

This shows the inverse is unique.

2.4 Lemma. Multiplication in a Banach algebra is continous.

Proof. Let an → a and bn → b. Using the definition of a Banach algebra and the triangle
inequality, we have

‖anbn − ab‖ = ‖anbn − abn + abn − ab‖
≤ ‖anbn − abn‖+ ‖abn − ab‖
≤ ‖an − a‖‖bn‖+ ‖a‖‖bn − b‖

Note (‖bn‖)∞n=1 is bounded due to the assumption that bn → b. Using this and that the two
sequences converge by assumption, it follows that ‖anbn − ab‖→ 0.

2.5 Definition. 1. An involutive algebra A is a (associative) complex algebra for which there
is a map a 7→ a∗ such that for each a, b ∈ A, λ, µ ∈ C,

(a) (a∗)∗ = a,

(b) (λa+ µb)∗ = λa∗ + µb∗

(c) (ab)∗ = b∗a∗

2. If (A, ‖ · ‖) is a Banach algebra with involution and ‖a∗‖ = ‖a‖ for each a ∈ A, then we
say that A is a Banach-*-algebra.

3. If (A, ‖ · ‖) is a Banach-*-algebra with the property that ‖aa∗‖ = ‖a‖2 for each a ∈ A,
then this is called a C∗-algebra.

4. If (A, ∗) is an involutive algebra, then Â is the set of non-zero homomorphism of A to C.

5. If A is a Banach-*-algebra, then we write Â for the set containing the continous non-zero
homomorphisms.

6. An element a ∈ A, A an involutive algebra, is called

(a) normal if aa∗ = a∗a,

(b) Hermitian if a = a∗,

(c) orthogonal projection if aa∗ = a.

2.6 Remark. If H is a complex Hilbert space and A ⊂ B(H) is a closed subset which forms an
algebra with the adjoint as involution, a 7→ a∗, i.e. A∗ ⊂ A, then A is a C∗-algebra. In particular,
B(H) is a C∗-algebra. This is the case because on B(H), we had shown ‖a∗a‖ = ‖a‖2 = ‖a∗‖2
for each a ∈ B(H).
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