Lecture Notes from October 10, 2022

taken by Nick Fularczyk

Last time

- characterization of representations of abelian semigroups

Warm up:

1.6 Question. Given $G=(\mathbb{Z},+)$ and $s^{*}=-s$, then show

$$
\widehat{G} \cong S^{1}=\{z \in \mathbb{C}:|z|=1\}
$$

To see this, assume $\chi: G \mapsto \mathbb{C}$ is a character. Then, we know that

$$
\chi(0)=[\chi(0)]^{*} \chi(0),
$$

so $\chi(0) \in\{0,1\}$. Moreover, $\chi(n)=\chi(n+0)=\chi(0) \chi(n)$ for each $n \in \mathbb{Z}$, and χ is not identically zero by definition of a character. Hence, $\chi(0)=1$. Furthermore,

$$
\chi(n)= \begin{cases}{[\chi(1)]^{n}} & n \in \mathbb{N}_{0} \\ {\left[\chi(1)^{*}\right]^{n}} & n<0\end{cases}
$$

and $(\chi(1))^{*} \chi(1)=\chi(0)$. Therefore, if we let $z=\chi(1)$, we see that $\bar{z} z=1$, so $|z|=1$. Hence, every χ is characterized by $\chi(1)=z \in S^{1}$. Conversely, given any $z \in S^{1}$ assigning $\chi(1)=z$ yields a character on G.
1.7 Question. Given $S=\left(\mathbb{N}_{0},+\right)$ and $s^{*}=s$, then show that $\widehat{S}_{0} \cong \mathbb{R}$

Note, if $\chi \in \widehat{S}_{0}$ is the zero homomorphism then we can identify χ with the real number zero. So, assume $\chi: S \mapsto \mathbb{C}$ is a character. Using similar techniques as in the previous question, we can show that $\chi(0)=1$ and $\chi(n)=[\chi(1)]^{n}$ for each $n \in \mathbb{N}_{0}$. Furthermore,

$$
\begin{aligned}
\chi(n) & =\chi\left(n^{*}\right) \\
& =\chi(n)^{*}
\end{aligned}
$$

for each $n \in \mathbb{N}_{0}$. Therefore, if we let $z=\chi(1)$, then $z=\bar{z} \in \mathbb{R}$. Conversely, given any $a \in \mathbb{R}$ assigning $\chi(n)=a^{n}$ for each $n \in \mathbb{N}_{0}$ yields a homomorphism in \hat{S}_{0}.
1.8 Question. Given $S=\left(\mathbb{N}_{0} \times \mathbb{N}_{0},+\right)$ and $(n, m)^{*}=(\mathfrak{m}, n)$, then show that $\hat{S}_{0} \cong \mathbb{C}$

Assume $\chi: S \mapsto \mathbb{C}$ is a character. Since χ is not identically zero, we can show that $\chi((0,0))=$ 1. It now follows from the lecture notes on September 20, 2022 that $\chi((1,0))$ determines the representation/character. Therefore, every χ is characterized by $\chi((1,0))=z \in \mathbb{C} /\{0\}$. As in the previous question, we identify the zero homomorphism with zero. Conversely, we can show that if we are given $z \in \mathbb{C}$ that setting $\chi((m, n))=z^{m} \bar{z}^{\mathfrak{n}}$ for each $\mathfrak{m}, n \in \mathbb{N}_{0}$ determines a homomorphism in $\widehat{\mathrm{S}}_{0}$.

We conclude with a spectral theorem for normal operators on finite dimensional Hilbert spaces.
1.9 Theorem. Let \mathcal{H} be a complex Hilbert space such that $\operatorname{dim\mathcal {H}}<\infty$. An operator $\mathrm{A} \in \mathrm{B}(\mathcal{H})$ is normal if and only if $\mathcal{H}=\bigoplus_{\lambda} \mathcal{H}_{\lambda}$ where λ denumerates the eigenvalues of A

Proof. If \mathcal{A} is normal, then we define an involutive semigroup representation for

$$
S=\left\{(n, m): n, m \in \mathbb{N}_{0}\right\}
$$

with $(n, m)^{*}=(m, n)$ by

$$
\pi(n, m)=A^{n}\left(A^{*}\right)^{m}
$$

Since S is abelian, the representation decomposes into a direct sum of one-dimensional ones on invariant subspaces that are mutually orthogonal. Hence, A is diagonalizable and the eigenspaces of A are invariant subspaces.
Conversely, if \mathcal{H} is a direct sum of eigenspaces for \mathcal{A}, taking $v \in \mathcal{H}_{\lambda}$, i.e. $A v=\lambda v$, then by $\left.A\right|_{\text {span }\{v\}}=\lambda i d_{\text {span }\{v\}}$, we have $\left.A^{*}\right|_{\text {span }\{v\}}=\bar{\lambda} i d_{\text {span }\{v\}}$. On each eigenspace, the restriction of A and A^{*} commute, so by direct sum decomposition, $A A^{*}=A^{*} A$. Hence, A is normal.

2 Banach algebras and Spectral Theory

2.1 Definition. 1. A complex vector space A with a map $A \times A \mapsto A,(x, y) \mapsto x y$ is called an (associative) algebra if $(x y) z=x(y z)$ for each $x, y, z \in A$.
2. Let A be an algebra. An element 1 is called a unit if $1 a=a 1=a$ for each $a \in A$.
3. Let A be an associative algebra with a unit. An element $a \in A$ is called invertible if there is $b \in A$ such that $a b=b a=1$. In that case, the inverse is unique. We then say b is the inverse of $a, b=a^{-1}$.
4. An algebra A which is a Banach space is called a Banach algebra if $\|a b\| \leq\|a\|\|b\|$ for $a, b \in A$.
2.2 Remark. The set $G(A)$ of invertible elements forms a group with unit 1 .
2.3 Claim. Let A be an associative algebra with a unit. If $a \in A$ is invertible then the inverse is unique.

Proof. Suppose a is invertible and that b_{1} and b_{2} are inverses of A. Observe that,

$$
\begin{aligned}
b_{1} & =b_{1} 1 \\
& =b_{1}\left(a b_{2}\right) \\
& =\left(b_{1} a\right) b_{2} \\
& =1 b_{2} \\
& =b_{2}
\end{aligned}
$$

This shows the inverse is unique.

2.4 Lemma. Multiplication in a Banach algebra is continous.

Proof. Let $a_{n} \rightarrow a$ and $b_{n} \rightarrow b$. Using the definition of a Banach algebra and the triangle inequality, we have

$$
\begin{aligned}
\left\|a_{n} b_{n}-a b\right\| & =\left\|a_{n} b_{n}-a b_{n}+a b_{n}-a b\right\| \\
& \leq\left\|a_{n} b_{n}-a b_{n}\right\|+\left\|a b_{n}-a b\right\| \\
& \leq\left\|a_{n}-a\right\|\left\|b_{n}\right\|+\|a\|\left\|b_{n}-b\right\|
\end{aligned}
$$

Note $\left(\left\|b_{n}\right\|\right)_{n=1}^{\infty}$ is bounded due to the assumption that $b_{n} \rightarrow b$. Using this and that the two sequences converge by assumption, it follows that $\left\|a_{n} b_{n}-a b\right\| \rightarrow 0$.
2.5 Definition. 1. An involutive algebra A is a (associative) complex algebra for which there is a map $a \mapsto a^{*}$ such that for each $a, b \in A, \lambda, \mu \in \mathbb{C}$,
(a) $\left(a^{*}\right)^{*}=a$,
(b) $(\lambda a+\mu b)^{*}=\bar{\lambda} a^{*}+\bar{\mu} b^{*}$
(c) $(\mathrm{ab})^{*}=\mathrm{b}^{*} \mathrm{a}^{*}$
2. If $(A,\|\cdot\|)$ is a Banach algebra with involution and $\left\|a^{*}\right\|=\|a\|$ for each $a \in A$, then we say that A is a Banach-*-algebra.
3. If $(A,\|\cdot\|)$ is a Banach-*-algebra with the property that $\left\|a a^{*}\right\|=\|a\|^{2}$ for each $a \in A$, then this is called a C^{*}-algebra.
4. If $(A, *)$ is an involutive algebra, then \hat{A} is the set of non-zero homomorphism of A to \mathbb{C}.
5. If A is a Banach-*-algebra, then we write \hat{A} for the set containing the continous non-zero homomorphisms.
6. An element $a \in A, A$ an involutive algebra, is called
(a) normal if $a a^{*}=a^{*} a$,
(b) Hermitian if $a=a^{*}$,
(c) orthogonal projection if $\mathrm{aa}^{*}=\mathrm{a}$.
2.6 Remark. If \mathcal{H} is a complex Hilbert space and $A \subset B(\mathcal{H})$ is a closed subset which forms an algebra with the adjoint as involution, $a \mapsto a^{*}$, i.e. $A^{*} \subset A$, then A is a C^{*}-algebra. In particular, $B(\mathcal{H})$ is a C^{*}-algebra. This is the case because on $B(\mathcal{H})$, we had shown $\left\|a^{*} a\right\|=\|a\|^{2}=\left\|a^{*}\right\|^{2}$ for each $a \in B(\mathcal{H})$.

