Lecture Notes from October 10, 2022

taken by Nick Fularczyk

Last time

• characterization of representations of abelian semigroups

Warm up:

1.6 Question. Given $G = (\mathbb{Z}, +)$ and $s^* = -s$, then show

$$\widehat{\mathsf{G}} \cong \mathsf{S}^1 = \{ z \in \mathbb{C} : |z| = 1 \}$$

To see this, assume $\chi: \mathsf{G} \mapsto \mathbb{C}$ is a character. Then, we know that

$$\chi(0) = [\chi(0)]^* \chi(0),$$

so $\chi(0) \in \{0, 1\}$. Moreover, $\chi(n) = \chi(n+0) = \chi(0)\chi(n)$ for each $n \in \mathbb{Z}$, and χ is not identically zero by definition of a character. Hence, $\chi(0) = 1$. Furthermore,

$$\chi(\mathfrak{n}) = \begin{cases} [\chi(1)]^{\mathfrak{n}} & \mathfrak{n} \in \mathbb{N}_0\\ [\chi(1)^*]^{\mathfrak{n}} & \mathfrak{n} < 0 \end{cases}$$

and $(\chi(1))^*\chi(1) = \chi(0)$. Therefore, if we let $z = \chi(1)$, we see that $\overline{z}z = 1$, so |z| = 1. Hence, every χ is characterized by $\chi(1) = z \in S^1$. Conversely, given any $z \in S^1$ assigning $\chi(1) = z$ yields a character on G.

1.7 Question. Given $S = (\mathbb{N}_0, +)$ and $s^* = s$, then show that $\widehat{S}_0 \cong \mathbb{R}$

Note, if $\chi \in \hat{S}_0$ is the zero homomorphism then we can identify χ with the real number zero. So, assume $\chi : S \mapsto \mathbb{C}$ is a character. Using similar techniques as in the previous question, we can show that $\chi(0) = 1$ and $\chi(n) = [\chi(1)]^n$ for each $n \in \mathbb{N}_0$. Furthermore,

$$\chi(\mathfrak{n}) = \chi(\mathfrak{n}^*)$$
$$= \chi(\mathfrak{n})^*$$

for each $n \in \mathbb{N}_0$. Therefore, if we let $z = \chi(1)$, then $z = \overline{z} \in \mathbb{R}$. Conversely, given any $a \in \mathbb{R}$ assigning $\chi(n) = a^n$ for each $n \in \mathbb{N}_0$ yields a homomorphism in \hat{S}_0 .

1.8 Question. Given $S = (\mathbb{N}_0 \times \mathbb{N}_0, +)$ and $(n, m)^* = (m, n)$, then show that $\hat{S}_0 \cong \mathbb{C}$

Assume $\chi : S \mapsto \mathbb{C}$ is a character. Since χ is not identically zero, we can show that $\chi((0,0)) = 1$. It now follows from the lecture notes on September 20, 2022 that $\chi((1,0))$ determines the representation/character. Therefore, every χ is characterized by $\chi((1,0)) = z \in \mathbb{C}/\{0\}$. As in the previous question, we identify the zero homomorphism with zero. Conversely, we can show that if we are given $z \in \mathbb{C}$ that setting $\chi((m,n)) = z^m \overline{z}^n$ for each $m, n \in \mathbb{N}_0$ determines a homomorphism in \hat{S}_0 .

We conclude with a spectral theorem for normal operators on finite dimensional Hilbert spaces.

1.9 Theorem. Let \mathcal{H} be a complex Hilbert space such that $\dim \mathcal{H} < \infty$. An operator $A \in B(\mathcal{H})$ is normal if and only if $\mathcal{H} = \bigoplus_{\lambda} \mathcal{H}_{\lambda}$ where λ denumerates the eigenvalues of A

Proof. If A is normal, then we define an involutive semigroup representation for

$$S = \{(n, m) : n, m \in \mathbb{N}_0\}$$

with $(n,m)^* = (m,n)$ by

$$\pi(\mathfrak{n},\mathfrak{m})=A^{\mathfrak{n}}(A^*)^{\mathfrak{m}}.$$

Since S is abelian, the representation decomposes into a direct sum of one-dimensional ones on invariant subspaces that are mutually orthogonal. Hence, A is diagonalizable and the eigenspaces of A are invariant subspaces.

Conversely, if \mathcal{H} is a direct sum of eigenspaces for A, taking $v \in \mathcal{H}_{\lambda}$, i.e. $Av = \lambda v$, then by $A|_{span\{v\}} = \lambda id_{span\{v\}}$, we have $A^*|_{span\{v\}} = \overline{\lambda} id_{span\{v\}}$. On each eigenspace, the restriction of A and A^* commute, so by direct sum decomposition, $AA^* = A^*A$. Hence, A is normal.

2 Banach algebras and Spectral Theory

- **2.1 Definition.** 1. A complex vector space A with a map $A \times A \mapsto A$, $(x, y) \mapsto xy$ is called an *(associative) algebra* if (xy)z = x(yz) for each $x, y, z \in A$.
 - 2. Let A be an algebra. An element 1 is called a *unit* if 1a = a1 = a for each $a \in A$.
 - 3. Let A be an associative algebra with a unit. An element $a \in A$ is called *invertible* if there is $b \in A$ such that ab = ba = 1. In that case, the inverse is unique. We then say b is the inverse of a, $b = a^{-1}$.
 - An algebra A which is a Banach space is called a *Banach algebra* if ||ab|| ≤ ||a||||b|| for a, b ∈ A.

2.2 Remark. The set G(A) of invertible elements forms a group with unit 1.

2.3 Claim. Let A be an associative algebra with a unit. If $a \in A$ is invertible then the inverse is unique.

Proof. Suppose a is invertible and that b_1 and b_2 are inverses of A. Observe that,

$$b_1 = b_1 1$$

= $b_1(ab_2)$
= $(b_1a)b_2$
= $1b_2$
= b_2

This shows the inverse is unique.

2.4 Lemma. Multiplication in a Banach algebra is continous.

Proof. Let $a_n\to a$ and $b_n\to b.$ Using the definition of a Banach algebra and the triangle inequality, we have

$$\begin{split} \|a_{n}b_{n}-ab\| &= \|a_{n}b_{n}-ab_{n}+ab_{n}-ab\| \\ &\leq \|a_{n}b_{n}-ab_{n}\|+\|ab_{n}-ab\| \\ &\leq \|a_{n}-a\|\|b_{n}\|+\|a\|\|b_{n}-b\| \end{split}$$

Note $(\|b_n\|)_{n=1}^{\infty}$ is bounded due to the assumption that $b_n \to b$. Using this and that the two sequences converge by assumption, it follows that $\|a_nb_n - ab\| \to 0$.

- **2.5 Definition.** 1. An *involutive algebra* A is a (associative) complex algebra for which there is a map $a \mapsto a^*$ such that for each $a, b \in A$, $\lambda, \mu \in \mathbb{C}$,
 - (a) $(a^*)^* = a$,
 - (b) $(\lambda a + \mu b)^* = \overline{\lambda} a^* + \overline{\mu} b^*$
 - (c) $(ab)^* = b^*a^*$
 - If (A, || · ||) is a Banach algebra with involution and ||a^{*}|| = ||a|| for each a ∈ A, then we say that A is a Banach-*-algebra.
 - 3. If $(A, \|\cdot\|)$ is a Banach-*-algebra with the property that $\|aa^*\| = \|a\|^2$ for each $a \in A$, then this is called a C*-algebra.
 - 4. If (A, *) is an involutive algebra, then \hat{A} is the set of non-zero homomorphism of A to \mathbb{C} .
 - 5. If A is a Banach-*-algebra, then we write \hat{A} for the set containing the continous non-zero homomorphisms.
 - 6. An element $a \in A$, A an involutive algebra, is called
 - (a) normal if $aa^* = a^*a$,
 - (b) Hermitian if $a = a^*$,
 - (c) orthogonal projection if $aa^* = a$.

2.6 Remark. If \mathcal{H} is a complex Hilbert space and $A \subset B(\mathcal{H})$ is a closed subset which forms an algebra with the adjoint as involution, $a \mapsto a^*$, i.e. $A^* \subset A$, then A is a C*-algebra. In particular, $B(\mathcal{H})$ is a C*-algebra. This is the case because on $B(\mathcal{H})$, we had shown $||a^*a|| = ||a||^2 = ||a^*||^2$ for each $a \in B(\mathcal{H})$.