Lecture Notes from October 06, 2022

taken by Phuong Tran

Last time

- The spectral theorem for normal operator on finite dimensional Hilbert spaces,
- Involutive algebras, Banach-*-algebra, C*-algebra

Warm up:

2.2 Question. If A is involutive algebra, and 1 is a left unit i.e. 1a = a for each $a \in A$, then show 1 is unique left unit and it is also right unit.

• right unit: we start from $\mathbb{1}\mathbb{1}^* = \mathbb{1}^*$, taking $(.)^*$ both sides, we obtain

$$(11^*)^* = (1^*)^* \implies 11^* = 1$$

Thus $1 = 1^*$. We then have $a 1 = (1^*a^*)^* = (a^*)^* = a$.

• uniqueness: Now we see if there is (another) left unit e, then

$$\mathbf{e}^{\mathbb{1} \text{ is right unit}} = \mathbf{e}^{\mathbb{1} \mathbb{e}^{\text{ is left unit}}} = \mathbb{1}$$

2.3 Lemma. Let A be an involutive algebra, then the following properties hold:

- (1) Hermitian elements in A are normal,
- (2) An element of the form xx^* for $x \in A$, is Hermitian
- (3) The product of two Hermitian elements x and y is Hermitian if and only if xy = yx
- (4) $A = A_n \oplus iA_n$ i.e. each $a \in A$ has a unique decomposition a = b + ic with b, c Hermitian
- (5) An element a = b + c, $b = b^*$, $c = c^*$ is normal if and only if bc = cb
- (6) A has a unit, and x has an inverse, then $(x^{-1})^* = (x^*)^{-1}$
- (7) If ||.|| is a sub-multiplicative norm on A and $||x||^2 \le ||x^* x||$ for each $x \in A$, then $||x^*|| = ||x||$ and $||x^* x|| = ||x||^2$
- 2.4 Remark. iA_n is all the skew Hermitian with A_n is Hermitian

Proof.

- (1) Let $a \in A$ be Hermitian i.e $a = a^*$, then $a a^* = a a = a^* a^* = a^* a$. So a is normal.
- (2) Let $x \in A$. Then we have $(x x^*)^* = (x^*)^* x^* = x x^*$, so $x x^*$ is Hermitian.
- (3) Let $x, y \in A$ be Hermitian. If xy = yx, then $(xy)^* = (yx)^* \implies (xy)^* = x^*y^* = xy$ since $x = x^*$, $y = y^*$. Conversely, if xy is Hermitian, then $xy = (xy)^* = y^*x^* = yx$ since $x = x^*$, $y = y^*$.
- (4) Given $a \in A$, we write $b = \frac{a+a^*}{2}$ and $c = \frac{a-a^*}{2i}$. Then b, c are Hermitian and a = b + ic. Moreover, if a = b' + ic' with $(b')^* = b'$ and $(c')^* = c'$ then by taking Hermitian and antiHerimitian parts give b' = b and c' = c.
- (5) We have

$$a a^{*} = (b + ic) \underbrace{(b - ic)}_{b^{*} - ic^{*}} \qquad a^{*} a = \underbrace{(b - ic)}_{b^{*} - ic^{*}} (b + ic)$$
$$= b^{2} + \underbrace{icb - ibc}_{i(cb - bc)} + c^{2} \qquad = b^{2} \underbrace{-icb + ibc}_{-i(cb - bc)} + c^{2}$$

By comparing these expressions, $a^* a = a a^*$ if and only if cb - bc = 0 or cb = bc

(6) If A has a unit 1 and x is invertible. Then

$$x^{-1}x = xx^{-1} = 1$$

then applying the involution,

$$x^* (x^{-1})^* = (x^{-1})^* x^* = 1^* = 1$$

Hence x^* has an inverse which can be identified as $(x^{-1})^*$.

(7) First, we note that for $x \in A$,

$$\|\mathbf{x}\|^2 \le \|\mathbf{x}^* \mathbf{x}\| \le \|\mathbf{x}^*\| \|\mathbf{x}\|$$

So we know, $\|x\| \le \|x^*\|$. Thus, implies that

$$\|x\| \le \|x^*\| \le \|(x^*)^*\| = \|x\|$$

Hence, equality holds throughout. Returning to the first chain of inequality gives

$$\|\mathbf{x}\|^2 \le \|\mathbf{x}^* \, \mathbf{x}\| \le \|\mathbf{x}^*\| \|\mathbf{x}\| \le \|\mathbf{x}\| \|\mathbf{x}\| = \|\mathbf{x}\|^2$$

So the quality holds between $||x||^2$ and $||x^*x||$

2.5 Example (for C*-algebra). Let X be a locally Hausdorff space, $C_0(X)$ is the set of the continuous on X such that for each $\varepsilon > 0$, there is a compact set K, if $x \notin K$, $|f(x)| < \varepsilon$. We equip $C_0(X)$ with a norm

$$\|f\|_{\infty} = \sup_{x \in X} |f(x)|$$

This is a closed subspace of the bounded, continuous functions on X. With $f^*(x) = f(x)$, this becomes C*-algebra

Proof.

Completeness:

Consider a Cauchy sequence $\{f_n\}_{n\in\mathbb{N}}\subset C_0(X)$. Then we have

$$\|f_n-f_m\|_\infty = \sup_{x\in X} |f_n(x)-f_m(x)| \to 0 \text{ as } n, m \to \infty$$

 $\text{Define } f:X\to \mathbb{C} \text{ as } f(x)=\lim_{n\to\infty}f_n(x). \text{ Then } |f_n(x)-f(x)|\to 0 \text{ as } n\to\infty$

First, we show that $\lim_{n\to\infty}f_n=f.$ We have that

$$\begin{split} \|f - f_n\|_{\infty} &= \sup_{x \in X} |f(x) - f_n(x)| = \|f - f_n\|_{\infty} = \sup_{x \in X} |f(x) - f_m(x) + f_m(x) - f_n(x)| \\ &\leq \sup_{x \in X} \underbrace{|f(x) - f_m(x)|}_{\text{since } f(x) = \lim_{m \to \infty} f_m(x)} + \underbrace{\sup_{x \in X} |f_m(x) - f_n(x)|}_{\text{since } f_n \text{ is Cauchy}} \\ &\longrightarrow 0 \qquad \text{as } n, m \to \infty \end{split}$$

Next, we show that $f \in C_0(X)$.

Since $f_n \in C_0(X)$, then f_n is continuous at $x \in X$. Given $\varepsilon > 0$, there is $\delta > 0$ such that for all $y \in X$, $||x - y|| < \delta$, implies that $|f_n(x) - f_n(y)| < \varepsilon$. With $x \in X$ and same condition such that $||x - y|| < \delta$, we have

$$\begin{split} |f(x) - f(y)| &= |\lim_{n \to \infty} f_n(x) - \lim_{n \to \infty} f_n(y)| \\ &\leq \lim_{n \to \infty} |f_n(x) - f_n(y)| < \varepsilon \end{split}$$

Thus, f is continuous on X. Hence $f \in C_0(X)$ because for each $\varepsilon > 0$, there is a compact set K, such that if $x \notin K$, $|f(x)| = |\lim_{n \to \infty} f_n(x)| \le \lim_{n \to \infty} |f_n(x)| < \varepsilon$ (same compact set K in $f_n \in C_0(X)$ condition).

• Now, we show that $C_0(X)$ is an algebra. Let $f, g \in C_0(X)$, then

$$\begin{split} \|\mathbf{f} \cdot \mathbf{g}\|_{\infty} &= \sup_{\mathbf{x} \in X} |\mathbf{f}(\mathbf{x}) \mathbf{g}(\mathbf{x})| \le \sup_{\mathbf{x} \in X} \left(\sup_{\mathbf{x} \in X} |\mathbf{f}(\mathbf{x})| \ |\mathbf{g}(\mathbf{x})| \right) \\ &= \sup_{\mathbf{x} \in X} |\mathbf{f}(\mathbf{x})| \left(\sup_{\mathbf{x} \in X} |\mathbf{g}(\mathbf{x})| \right) = \|\mathbf{f}\|_{\infty} \|\mathbf{g}\|_{\infty} \end{split}$$

• Next, for $f\in C_0(X),\ f^*(x)=\overline{f(x)}.$ We have

$$\|f^*\|_{\infty} = \sup_{x \in X} |f^*(x)| = \sup_{x \in X} |\overline{f(x)}| = \sup_{x \in X} |f(x)| = \|f\|_{\infty}$$

• Finally, we show $C_0(X)$ is C*-algebra . For each $f \in C_0(X)$, consider

$$f^* \cdot f(x) = f^*(x) f(x) = \overline{f(x)} f(x) = |f(x)|^2$$

taking sup over X, we get

$$\|f^* \cdot f\|_{\infty} = \sup_{x \in X} |f(x)|^2 \ge \left(\sup_{x \in X} |f(x)| \right)^2 = \|f\|_{\infty}^2$$

Hence by Lemma 2.3(7), this completes the proof.

For this C*-algebra , the map $\delta_x : C_0(X) \to \mathbb{C}$ with $f \mapsto f(x)$ is a (nontrivial) character on $C_0(X)$. This is because of Urysohn's lemma which guarantees the existence of a function $f \in C_0(X)$ with f(x) = 1. We will see later, $(\widehat{C_0(X)}) = \{\delta_x : x \in X\}$.

As a special example, if $X = \mathbb{N}$, $C_0(X) = c_0$ and $\hat{c_0} = \{\delta_n : n \in \mathbb{N}\} \cong \mathbb{N}$.

More examples with different types of norm.

2.6 Examples. Let S be an involutive semigroup. Consider $\ell^1(S)$ i.e. the space of all $f: S \to \mathbb{C}$ with $\|f\|_1 = \sum_{s \in S} |f(s)| < \infty$. (Note that the set $\{s \in S : f(s) \neq 0\}$ is at most countable). Equip $\ell^1(S)$ with the convolution

$$(f * g)(s) = \sum_{\substack{a,b \in S \\ ab = s}} f(a)g(b)$$

and let $f^*(s) = \overline{f(s^*)}.$ Then $\ell^1(S)$ becomes a Banach-*-algebra .

Proof.

• First, we see that $\ell^1(S)$ is closed under convolution. Let $f, g \in \ell^1(S)$. Then

$$\|f\|_1 = \sum_{s \in S} |f(s)| < \infty$$
 and $\|g\|_1 = \sum_{s \in S} |g(s)| < \infty$

Let $J_f=\{s\in S: f(s)\neq 0\}$ and $J_g=\{s\in S: g(s)\neq 0\}.$ Note that J_f and J_g are at most countable. Consider

$$\|f * g\|_{1} = \sum_{s \in S} |f * g(s)| = \sum_{s \in S} |\sum_{\substack{a, b \in S \\ ab = s}} f(a)g(b)|$$

$$\leq \sum_{s \in S} \sum_{\substack{a, b \in S \\ ab = s}} |f(a)| |g(b)| = \sum_{a \in S} \left(|f(a)| \sum_{\substack{b \in S \\ ab = s}} |g(b)| \right)$$

$$\leq \sum_{a \in S} \left(|f(a)| \|g\|_{1} \right) = \|g\|_{1} \|f\|_{1} < \infty$$
(1)

Thus, $f * g \in \ell^1(S)$.

• Next, we show that $\ell^1(S)$ is a Banach algebra. Consider a Cauchy sequence $\{f_n\}_{n\in\mathbb{N}}\subset \ell^1(S)$. Define $f:S\to\mathbb{C},\ f(s)=\lim_{n\to\infty}f_n(s)$.

$$\begin{split} \|f - f_n\|_1 &= \sum_{s \in S} |f(s) - f_n(s)| = \sum_{s \in S} |f(s) - f_m(s) + f_m(s) - f_n(s)| \\ &\leq \sum_{s \in S} \underbrace{|f(s) - f_m(s)|}_{\substack{\text{for each } s \\ \text{since } \overline{f(s)} = \lim_{m \to \infty} f_m(s)}}_{\text{since } f_n(s)} + \underbrace{\sum_{s \in S} |f_m(s) - f_n(s)|}_{\substack{\text{since } f_n \text{ is } \text{Cauchy}}} \\ &\longrightarrow 0 \qquad \text{as } n, m \to \infty \end{split}$$

Also,

$$\|f\|_1 = \sum_{s \in S} |f(s)| = \sum_{s \in S} |\lim_{n \to \infty} f_n(s)| \le \lim_{n \to \infty} \sum_{s \in S} |f_n(s)| < \infty$$

Thus, $\{f_n\}_{n\in\mathbb{N}}$ converges to $f \in \ell^1(S)$. So $\ell^1(S)$ is a Banach space and we then even have $\|f * g\|_1 \le \|f\|_1 \|g\|_1$ as in equation 1. Hence, it is a Banach algebra.

• And finally, we show $\ell^1(S)$ is a Banach-*-algebra . Let $f \in \ell^1(S)$ and $f^*(s) = \overline{f(s^*)}$. Then

$$\begin{split} \|f^*\|_1 &= \sum_{s \in S} |f^*(s)| = \sum_{s \in S} |\overline{f(s^*)}| = \sum_{s \in S} |f(s^*)| \\ &= \sum_{s^* \in S} |f(s)| = \|f\|_1 \end{split}$$

We than have a homomorphism $\eta:S\to \ell^1(S)$ that maps $s\mapsto \delta_s$ with

$$\delta_s(t) = \begin{cases} 1 & \text{if } s = t \\ 0 & \text{elsewhere} \end{cases}$$

For these,

$$\begin{split} (\delta_s * \delta_t)(x) &= \sum_{\substack{a,b \in S \\ ab = x}} \delta_s(a) \, \delta_t(b) \\ &= \begin{cases} 1 & \text{if } \delta_s(a) = 1 = \delta_t(b) \\ 0 & \text{otherwise} \end{cases} = \begin{cases} 1 & \text{if } s = a, t = b \\ 0 & \text{otherwise} \end{cases} = \begin{cases} 1 & \text{if } ab = st = x \\ 0 & \text{otherwise} \end{cases} \end{split}$$

 $=\delta_{st}(x)$

Since

$$\begin{split} \delta_s^*(t) &= \overline{\delta_s(t^*)} = \delta_s(t^*) = \begin{cases} 1 & \text{if } s = t^* \\ 0 & \text{otherwise} \end{cases} = \begin{cases} 1 & \text{if } s^* = (t^*)^* = t \\ 0 & \text{otherwise} \end{cases} \\ &= \delta_{s^*}(t) \end{split}$$

then $\delta_s^* = \delta_{s^*}$, we even have $\eta(s^*) = \delta_{s^*} = \delta_s^* = (\eta(s))^*$, so η is a homomorphism that identifies the involutive semigroup with a subset of $\ell^1(S)$, so it embeds S in the Banach-*-algebra .