Lecture Notes from October 06, 2022

taken by Phuong Tran

Last time
e The spectral theorem for normal operator on finite dimensional Hilbert spaces,
e Involutive algebras, Banach-*-algebra , C*-algebra

Warm up:

2.2 Question. If A is involutive algebra, and 1 is a left unit i.,e. 1a = a for each a € A, then
show 1 is unique left unit and it is also right unit.

e right unit: we start from 11* = 1%, taking (.)* both sides, we obtain
(11%) = (1*)* — 11* =1
Thus 1T = 1*. We then have al = (1*a*)* = (a*)* = a.
e uniqueness: Now we see if there is (another) left unit e, then

1 is right unit e is left unit
= el = 1

2.3 Lemma. Let A be an involutive algebra, then the following properties hold:
(1) Hermitian elements in A are normal,
(2) An element of the form xx* for x € A, is Hermitian
(3) The product of two Hermitian elements x andy is Hermitian if and only if xy = yx
(4) A =A,®iA, ie eacha € A has a unique decomposition a = b+ic with b, c Hermitian
(5) An element a =b + ¢, b =b*, ¢ =c* is normal if and only if bc = cb
(6) A has a unit, and x has an inverse, then (x ')* = (x*)!

(7) If]].|| is a sub-multiplicative norm on A and ||x||* < ||x*x|| foreachx € A, then ||x*|| = ||x||
and ||x*x|| = [|x]|*

2.4 Remark. iA,, is all the skew Hermitian with A,, is Hermitian
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Proof.

(1)
()
(3)

(4)

Let a € A be Hermitian i.e a = a*, then aa* =aa = a*a* = a*a. So a is normal.
Let x € A. Then we have (xx*)* = (x*)* x* = xx*, so xx* is Hermitian.

Let x,y € A be Hermitian.
If xy = yx, then (xy)* = (yx)* = (xy)* =x*y* = xy since x =x*, y = y*.
Conversely, if xy is Hermitian, then xy = (xy)* = y*x* = yx since x =x*, y =y*.

Given a € A, we write b = C‘JFT“ and ¢ = % Then b, ¢ are Hermitian and a = b + ic.
Moreover, if a = b’ + ic’ with (b’)* = b’ and (c¢’)* = ¢’ then by taking Hermitian and
antiHerimitian parts give b’ =b and ¢’ =c.

We have
aa* = (b+ic)(b—ic) a*a=(b—ic)(b+1ic)
b*—ic* b*—ic*
= b% +icb — ibc +c? = b? —icb + ibc +c?
i(cb—bc) —i(cb—bc)

By comparing these expressions, a* a = a a* if and only if cb —bc =0 or cb = bc
If A has a unit 1 and x is invertible. Then
xTx=xx"'=1
then applying the involution,
Y =) =1t =1

Hence x* has an inverse which can be identified as (x~')*.
First, we note that for x € A,

[Pell® < flx x| < [l
So we know, ||x|| < [|x*||. Thus, implies that

[Ix[] < I [F < 1)) = [l
Hence, equality holds throughout. Returning to the first chain of inequality gives
[l < flx xll < Il < fixixl = 1)

So the quality holds between ||x|* and ||x* x|



2.5 Example (for C*-algebra ). Let X be a locally Hausdorff space, Co(X) is the set of the
continuous on X such that for each € > 0, there is a compact set K, if x € K, [f(x)] < €. We
equip Co(X) with a norm
[[f[lo = sup[f(x)|
xeX
This is a closed subspace of the bounded, continuous functions on X. With f*(x) = f(x), this
becomes C*-algebra

Proof.

e Completeness:
Consider a Cauchy sequence {f,}hen C Co(X). Then we have

Ifn — finlloo = sup|fn(x) — fr(x)] — 0 as n,m — oo
xXEX

Define f: X — C as f(x) = lim f,(x). Then |[f (x) —f(x)] 2 0 asn — oo
n—oo

First, we show that lim f, = f. We have that

n—oo

If — fullo = sup [f(x) = fu(x)] = [|f — fulloo = sup (%) = fin(x) + fin(x) — fn (x|
Xe Xe

S sup |f(X) - fm(x)| —I—sup |fm(x) - fn(x)l
xeX \ﬂo_/ \xeX

since f(x)= lim fm(x) n,m—oco
m—oo

since f, is Cauchy

— 0 as n, m — 0o

Next, we show that f € Cy(X).

Since f,, € Cy(X), then f, is continuous at x € X. Given € > 0, there is & > 0 such that
for ally € X, |[x —yl| < 6, implies that |f,(x) — f,(y)] < e. With x € X and same
condition such that ||x —yl| < 8, we have

#(x) — )l = lim fu(x) — lim fy(y)|

n—oo

< lim |fo(x) = fu(y)l <e
n—oo

Thus, f is continuous on X. Hence f € Cy(X) because for each € > 0, there is a compact
set K, such that if x ¢ K, [f(x)] = | lim f,(x)| < lim [f,(x)| < € (same compact set K
n—oo n—oo

in f, € Co(X) condition).

e Now, we show that Cy(X) is an algebra. Let f, g € Co(X), then

17+ 91w = pIT)g ()] < sup (sup|f(x)| |g(x)|)

xeX \ xeX

— sup [£(x)| (sgxxng(xn) — ool gllec

xeX



e Next, for f € Co(X), f*(x) = f(x). We have

17[loo = sup I ()| = sup [FG)] = sup [F(x)] = [[f]loc
xeX xeX xeX

e Finally, we show Cy(X) is C*-algebra . For each f € Cy(X), consider
£ f(x) = £ (x) f(x) = f(x) f(x) = [f(x)?

taking sup over X, we get

2
£ - f||loo = sup|f(x)]* > (suplf(x)l) = |IfII%
xeX xeX
Hence by Lemma [2.3(7), this completes the proof. O

For this C*-algebra , the map &, : Co(X) — C with f — f(x) is a (nontrivial) character
on Co(X). This is because of Urysohn's Iemma which guarantees the existence of a function
f € Co(X) with f(x) = 1. We will see later, (Co( )) ={0,: x € X}.

As a special example, if X =N, Cyo(X) =cpand & ={0,: ne N} =N

More examples with different types of norm.

2.6 Examples. Let S be an involutive semigroup. Consider ¢'(S) i.e. the space of all f: S — C

with [[f|l; = >_ [f(s)] < co. ( Note that the set {s € S: f(s) # 0} is at most countable).
seS

Equip ¢'(S) with the convolution

(fxg)(s Zf

a,bes
ab=s

and let *(s) = f(s*). Then {'(S) becomes a Banach-*-algebra .
Proof.

e First, we see that ¢'(S) is closed under convolution. Let f,g € £'(S). Then

Il =D _If(s) <oco and lglli=)_lg(s) < oo

seS seS

Let Js ={s € S:f(s) #0} and J; = {s € S : g(s) # 0}. Note that J; and J4 are at most
countable. Consider

Ifxgli=Y Ifxgls) =Y 'Y fla)g(b)

seS s€S  a,beS
ab=s

<) D If(@llg®)l = | If(a)l ) Ig(b) (1)

s€S a,bes a€esS besS
ab=s ab=s
<Y (i@ |!9H1) ~ liglh Il < o0
aes

Thus, f* g€ £'(S).



o Next, we show that £'(S) is a Banach algebra. Consider a Cauchy sequence {fn}neny C £1(S).
Define f: S — C, f(s) = lim f,(s).
n—oo

I —fulli =) [f(s) = fuls) = Y [f(s) — f(s) + fm(s) — fu(s)]
ses seS
<Y ) = fuls) + 3 [fls) —Fuls)]
SES for each s s€S
since f(s):n}iinoo fm(s) n,mfoo

since fn is Cauchy

— 0 as n, m — oo

Also,
|14 Ees [f(s)] EES !nh_{l;lof s)| < hm EES [fn(s)] < oo

Thus, {fn}nen converges to £ € €'(S). So £'(S) is a Banach space and we then even have
I % glli <|[Ifll1]lgll as in equation [} Hence, it is a Banach algebra.

e And finally, we show £'(S) is a Banach-*-algebra . Let f € {'(S) and f*(s) = f(s*). Then

Il = > 1)l =D [f(s5) =) If(s")

seS seS seS
= 3 If(s)] = [l
s*€S

We than have a homomorphism 11 : S — €'(S) that maps s — &, with

1 ifs=t
Ss(t) - "
0 elsewhere

For these,
(8% 8)(x) = Y &l
a,bes
ab:x
)1 ifd(a)=1=208(b) |1 ifs=at=b J1 ifab=st=x
)10 otherwise )10 otherwise )10 otherwise
- 6st(x)
Since

0 otherwise 0 otherwise

S¢(t) = 8s(t*) = 8(t7) = {
- 53* (t)

then 87 = 04+, we even have n(s*) = - = 8 = (n(s))*, son is a homomorphism that identifies
the involutive semigroup with a subset of £'(S), so it embeds S in the Banach-*-algebra .

1 ifs=t _{1 if s* = (1) =t
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