Lecture Notes from October 06, 2022

taken by Phuong Tran

Last time

- The spectral theorem for normal operator on finite dimensional Hilbert spaces,
- Involutive algebras, Banach-*-algebra, C*-algebra

Warm up:

2.2 Question. If A is involutive algebra, and $\mathbb{1}$ is a left unit i.e. $\mathbb{1} a=a$ for each $a \in A$, then show $\mathbb{1}$ is unique left unit and it is also right unit.

- right unit: we start from $\mathbb{1 1}^{*}=\mathbb{1}^{*}$, taking (.)* both sides, we obtain

$$
\left(\mathbb{1} \mathbb{1}^{*}\right)^{*}=\left(\mathbb{1}^{*}\right)^{*} \Longrightarrow \mathbb{1} \mathbb{1}^{*}=\mathbb{1}
$$

Thus $\mathbb{1}=\mathbb{1}^{*}$. We then have $a \mathbb{1}=\left(\mathbb{1}^{*} a^{*}\right)^{*}=\left(a^{*}\right)^{*}=a$.

- uniqueness: Now we see if there is (another) left unit \mathbf{e}, then

$$
\mathbf{e}^{\mathbb{1} \text { is right unit }} \mathbf{e} \mathbb{1} \stackrel{\mathbf{e} \text { is left unit }}{=} \mathbb{1}
$$

2.3 Lemma. Let A be an involutive algebra, then the following properties hold:
(1) Hermitian elements in A are normal,
(2) An element of the form $x x^{*}$ for $x \in A$, is Hermitian
(3) The product of two Hermitian elements x and y is Hermitian if and only if $x y=y x$
(4) $A=A_{n} \oplus i A_{n}$ i.e. each $a \in A$ has a unique decomposition $a=b+i c$ with b, c Hermitian
(5) An element $\mathrm{a}=\mathrm{b}+\mathrm{c}, \mathrm{b}=\mathrm{b}^{*}, \mathrm{c}=\mathrm{c}^{*}$ is normal if and only if $\mathrm{bc}=\mathrm{cb}$
(6) A has a unit, and x has an inverse, then $\left(x^{-1}\right)^{*}=\left(x^{*}\right)^{-1}$
(7) If $\|$.$\| is a sub-multiplicative norm on A$ and $\|x\|^{2} \leq\left\|x^{*} x\right\|$ for each $x \in A$, then $\left\|x^{*}\right\|=\|x\|$ and $\left\|x^{*} x\right\|=\|x\|^{2}$
2.4 Remark. $\mathfrak{i} A_{n}$ is all the skew Hermitian with A_{n} is Hermitian
(1) Let $a \in A$ be Hermitian i.e $a=a^{*}$, then $a a^{*}=a a=a^{*} a^{*}=a^{*} a$. So a is normal.
(2) Let $x \in A$. Then we have $\left(x x^{*}\right)^{*}=\left(x^{*}\right)^{*} x^{*}=x x^{*}$, so $x x^{*}$ is Hermitian.
(3) Let $x, y \in A$ be Hermitian.

If $x y=y x$, then $(x y)^{*}=(y x)^{*} \Longrightarrow(x y)^{*}=x^{*} y^{*}=x y$ since $x=x^{*}, y=y^{*}$. Conversely, if $x y$ is Hermitian, then $x y=(x y)^{*}=y^{*} x^{*}=y x$ since $x=x^{*}, y=y^{*}$.
(4) Given $a \in A$, we write $b=\frac{a+a^{*}}{2}$ and $c=\frac{a-a^{*}}{2 i}$. Then b, c are Hermitian and $a=b+i c$. Moreover, if $a=b^{\prime}+i c^{\prime}$ with $\left(b^{\prime}\right)^{*}=b^{\prime}$ and $\left(c^{\prime}\right)^{*}=c^{\prime}$ then by taking Hermitian and antiHerimitian parts give $\mathrm{b}^{\prime}=\mathrm{b}$ and $\mathrm{c}^{\prime}=\mathrm{c}$.
(5) We have

$$
\begin{aligned}
a a^{*} & =(b+i c) \underbrace{(b-i c)}_{b^{*}-i c^{*}} & a^{*} a & =\underbrace{(b-i c)}_{b^{*}-i c^{*}}(b+i c) \\
& =b^{2}+\underbrace{i c b-i b c}_{i(c b-b c)}+c^{2} & & =b^{2} \underbrace{-i c b+i b c}_{-i(c b-b c)}+c^{2}
\end{aligned}
$$

By comparing these expressions, $a^{*} a=a a^{*}$ if and only if $c b-b c=0$ or $c b=b c$
(6) If A has a unit $\mathbb{1}$ and x is invertible. Then

$$
x^{-1} x=x x^{-1}=\mathbb{1}
$$

then applying the involution,

$$
x^{*}\left(x^{-1}\right)^{*}=\left(x^{-1}\right)^{*} x^{*}=\mathbb{1}^{*}=\mathbb{1}
$$

Hence x^{*} has an inverse which can be identified as $\left(x^{-1}\right)^{*}$.
(7) First, we note that for $x \in A$,

$$
\|x\|^{2} \leq\left\|x^{*} x\right\| \leq\left\|x^{*}\right\|\|x\|
$$

So we know, $\|x\| \leq\left\|x^{*}\right\|$. Thus, implies that

$$
\|x\| \leq\left\|x^{*}\right\| \leq\left\|\left(x^{*}\right)^{*}\right\|=\|x\|
$$

Hence, equality holds throughout. Returning to the first chain of inequality gives

$$
\|x\|^{2} \leq\left\|x^{*} x\right\| \leq\left\|x^{*}\right\|\|x\| \leq\|x\|\|x\|=\|x\|^{2}
$$

So the quality holds between $\|x\|^{2}$ and $\left\|x^{*} x\right\|$
2.5 Example (for C^{*}-algebra). Let X be a locally Hausdorff space, $C_{0}(X)$ is the set of the continuous on X such that for each $\epsilon>0$, there is a compact set K, if $x \notin K,|f(x)|<\epsilon$. We equip $C_{0}(X)$ with a norm

$$
\|f\|_{\infty}=\sup _{x \in X}|f(x)|
$$

This is a closed subspace of the bounded, continuous functions on X. With $f^{*}(x)=\overline{f(x)}$, this becomes C*-algebra

Proof.

- Completeness:

Consider a Cauchy sequence $\left\{f_{n}\right\}_{n \in \mathbb{N}} \subset C_{0}(X)$. Then we have

$$
\left\|f_{n}-f_{m}\right\|_{\infty}=\sup _{x \in X}\left|f_{n}(x)-f_{m}(x)\right| \rightarrow 0 \text { as } n, m \rightarrow \infty
$$

Define $f: X \rightarrow \mathbb{C}$ as $f(x)=\lim _{n \rightarrow \infty} f_{n}(x)$. Then $\left|f_{n}(x)-f(x)\right| \rightarrow 0$ as $n \rightarrow \infty$
First, we show that $\lim _{n \rightarrow \infty} f_{n}=f$. We have that

$$
\begin{aligned}
\left\|f-f_{n}\right\|_{\infty} & =\sup _{x \in X}\left|f(x)-f_{n}(x)\right|=\left\|f-f_{n}\right\|_{\infty}=\sup _{x \in X}\left|f(x)-f_{\mathfrak{m}}(x)+f_{m}(x)-f_{n}(x)\right| \\
& \leq \sup _{x \in X} \underbrace{\left|f(x)-\mathbf{l i m}_{\mathfrak{m}}(x)\right|}_{\text {since } f(x) \rightarrow=_{m \rightarrow \infty}}+\underbrace{\sup _{x \in X}\left|f_{\mathfrak{m}}(x)-f_{n}(x)\right|}_{\text {since } f_{n}(x) \text { is Cauchy }} \\
& \longrightarrow 0 \quad \text { as } n, m \rightarrow \infty
\end{aligned}
$$

Next, we show that $f \in C_{0}(X)$.
Since $f_{n} \in C_{0}(X)$, then f_{n} is continuous at $x \in X$. Given $\epsilon>0$, there is $\delta>0$ such that for all $y \in X,\|x-y\|<\delta$, implies that $\left|f_{n}(x)-f_{n}(y)\right|<\epsilon$. With $x \in X$ and same condition such that $\|x-y\|<\delta$, we have

$$
\begin{aligned}
|f(x)-f(y)| & =\left|\lim _{n \rightarrow \infty} f_{n}(x)-\lim _{n \rightarrow \infty} f_{n}(y)\right| \\
& \leq \lim _{n \rightarrow \infty}\left|f_{n}(x)-f_{n}(y)\right|<\epsilon
\end{aligned}
$$

Thus, f is continuous on X. Hence $f \in C_{0}(X)$ because for each $\epsilon>0$, there is a compact set K, such that if $x \notin K,|f(x)|=\left|\lim _{n \rightarrow \infty} f_{n}(x)\right| \leq \lim _{n \rightarrow \infty}\left|f_{n}(x)\right|<\epsilon$ (same compact set K in $f_{n} \in C_{0}(X)$ condition $)$.

- Now, we show that $C_{0}(X)$ is an algebra. Let $f, g \in C_{0}(X)$, then

$$
\begin{aligned}
\|f \cdot g\|_{\infty} & =\sup _{x \in X}|f(x) g(x)| \leq \sup _{x \in X}\left(\sup _{x \in X}|f(x)||g(x)|\right) \\
& =\sup _{x \in X}|f(x)|\left(\sup _{x \in X}|g(x)|\right)=\|f\|_{\infty}\|\mathfrak{g}\|_{\infty}
\end{aligned}
$$

- Next, for $f \in C_{0}(X), f^{*}(x)=\overline{f(x)}$. We have

$$
\left\|f^{*}\right\|_{\infty}=\sup _{x \in X}\left|f^{*}(x)\right|=\sup _{x \in X}|\overline{f(x)}|=\sup _{x \in X}|f(x)|=\|f\|_{\infty}
$$

- Finally, we show $C_{0}(X)$ is C^{*}-algebra. For each $f \in C_{0}(X)$, consider

$$
f^{*} \cdot f(x)=f^{*}(x) f(x)=\overline{f(x)} f(x)=|f(x)|^{2}
$$

taking sup over X, we get

$$
\left\|f^{*} \cdot f\right\|_{\infty}=\sup _{x \in X}|f(x)|^{2} \geq\left(\sup _{x \in X}|f(x)|\right)^{2}=\|f\|_{\infty}^{2}
$$

Hence by Lemma 2.3(7), this completes the proof.
For this C^{*}-algebra, the map $\delta_{x}: C_{0}(X) \rightarrow \mathbb{C}$ with $f \mapsto f(x)$ is a (nontrivial) character on $C_{0}(X)$. This is because of Urysohn's lemma which guarantees the existence of a function $f \in C_{0}(X)$ with $f(x)=1$. We will see later, $\left(\widehat{C_{0}(X)}\right)=\left\{\delta_{x}: x \in X\right\}$.

As a special example, if $X=\mathbb{N}, C_{0}(X)=c_{0}$ and $\widehat{\mathcal{C}_{0}}=\left\{\delta_{n}: n \in \mathbb{N}\right\} \cong \mathbb{N}$.
More examples with different types of norm.
2.6 Examples. Let S be an involutive semigroup. Consider $\ell^{1}(S)$ i.e. the space of all $f: S \rightarrow \mathbb{C}$ with $\|f\|_{1}=\sum_{s \in S}|f(s)|<\infty$. (Note that the set $\{s \in S: f(s) \neq 0\}$ is at most countable).
Equip $\ell^{1}(S)$ with the convolution

$$
(f * g)(s)=\sum_{\substack{a, b \in S \\ a b=s}} f(a) g(b)
$$

and let $f^{*}(s)=\overline{f\left(s^{*}\right)}$. Then $\ell^{1}(S)$ becomes a Banach-*-algebra .
Proof.

- First, we see that $\ell^{1}(S)$ is closed under convolution. Let $f, g \in \ell^{1}(S)$. Then

$$
\|f\|_{1}=\sum_{s \in S}|f(s)|<\infty \quad \text { and } \quad\|g\|_{1}=\sum_{s \in S}|g(s)|<\infty
$$

Let $\mathrm{J}_{\mathrm{f}}=\{\mathrm{s} \in \mathrm{S}: \mathrm{f}(\mathrm{s}) \neq 0\}$ and $\mathrm{J}_{\mathrm{g}}=\{\mathrm{s} \in \mathrm{S}: \mathrm{g}(\mathrm{s}) \neq 0\}$. Note that J_{f} and J_{g} are at most countable. Consider

$$
\begin{align*}
\|f * g\|_{1} & =\sum_{s \in S}|f * g(s)|=\sum_{s \in S}\left|\sum_{\substack{a, b \in S \\
a b=s}} f(a) g(b)\right| \\
& \leq \sum_{\substack{s \in S}} \sum_{\substack{a, b \in S \\
a b=s}}|f(a)||g(b)|=\sum_{a \in S}\left(|f(a)| \sum_{\substack{b \in S \\
a b=s}}|g(b)|\right) \tag{1}\\
& \leq \sum_{a \in S}\left(|f(a)|\|g\|_{1}\right)=\|g\|_{1}\|f\|_{1}<\infty
\end{align*}
$$

Thus, $f * g \in \ell^{1}(S)$.

- Next, we show that $\ell^{1}(S)$ is a Banach algebra. Consider a Cauchy sequence $\left\{f_{n}\right\}_{n \in \mathbb{N}} \subset \ell^{1}(S)$.

Define $\mathrm{f}: S \rightarrow \mathbb{C}, f(s)=\lim _{n \rightarrow \infty} f_{n}(s)$.

$$
\begin{aligned}
&\left\|f-f_{n}\right\|_{1}=\sum_{s \in S}\left|f(s)-f_{n}(s)\right|=\sum_{s \in S}\left|f(s)-f_{m}(s)+f_{m}(s)-f_{n}(s)\right| \\
& \leq \sum_{s \in S} \underbrace{\left|f(s)-f_{m}(s)\right|}_{\substack{\text { for each } s}}+\underbrace{\text { since }_{\mathrm{f}(s)=\lim _{m \rightarrow \infty}} f_{\mathfrak{m}}(s)}_{\substack{n, m \rightarrow \infty} 0} \\
& \sum_{\text {since } f_{n} \text { is Cauchy }}\left|f_{m}(s)-f_{n}(s)\right| \\
& \longrightarrow 0 \quad \text { as } n, m \rightarrow \infty
\end{aligned}
$$

Also,

$$
\|f\|_{1}=\sum_{s \in S}|f(s)|=\sum_{s \in S}\left|\lim _{n \rightarrow \infty} f_{n}(s)\right| \leq \lim _{n \rightarrow \infty} \sum_{s \in S}\left|f_{n}(s)\right|<\infty
$$

Thus, $\left\{f_{n}\right\}_{n \in \mathbb{N}}$ converges to $f \in \ell^{1}(S)$. So $\ell^{1}(S)$ is a Banach space and we then even have $\|\mathbf{f} * \mathbf{g}\|_{1} \leq\|\mathbf{f}\|_{1}\|\mathbf{g}\|_{1}$ as in equation 11. Hence, it is a Banach algebra.

- And finally, we show $\ell^{1}(S)$ is a Banach-*-algebra . Let $f \in \ell^{1}(S)$ and $f^{*}(s)=\overline{f\left(s^{*}\right)}$. Then

$$
\begin{aligned}
\left\|\mathbf{f}^{*}\right\|_{1} & =\sum_{s \in S}\left|f^{*}(s)\right|=\sum_{s \in S}\left|\overline{f\left(s^{*}\right)}\right|=\sum_{s \in S}\left|f\left(s^{*}\right)\right| \\
& =\sum_{s^{*} \in S}|f(s)|=\|f\|_{1}
\end{aligned}
$$

We than have a homomorphism $\eta: S \rightarrow \ell^{1}(S)$ that maps $s \mapsto \delta_{s}$ with

$$
\delta_{s}(t)= \begin{cases}1 & \text { if } s=t \\ 0 & \text { elsewhere }\end{cases}
$$

For these,

$$
\begin{aligned}
\left(\delta_{s} * \delta_{t}\right)(x) & =\sum_{\substack{a, b \in S \\
a b=x}} \delta_{s}(a) \delta_{t}(b) \\
& =\left\{\begin{array}{ll}
1 & \text { if } \delta_{s}(a)=1=\delta_{t}(b) \\
0 & \text { otherwise }
\end{array}=\left\{\begin{array}{ll}
1 & \text { if } s=a, t=b \\
0 & \text { otherwise }
\end{array}= \begin{cases}1 & \text { if } a b=s t=x \\
0 & \text { otherwise }\end{cases} \right.\right. \\
& =\delta_{s t}(x)
\end{aligned}
$$

Since

$$
\begin{aligned}
\delta_{s}^{*}(t) & =\overline{\delta_{s}\left(t^{*}\right)}=\delta_{s}\left(t^{*}\right)=\left\{\begin{array}{ll}
1 & \text { if } s=t^{*} \\
0 & \text { otherwise }
\end{array}= \begin{cases}1 & \text { if } s^{*}=\left(t^{*}\right)^{*}=t \\
0 & \text { otherwise }\end{cases} \right. \\
& =\delta_{s^{*}}(t)
\end{aligned}
$$

then $\delta_{s}^{*}=\delta_{s^{*}}$, we even have $\eta\left(s^{*}\right)=\delta_{s^{*}}=\delta_{s}^{*}=(\eta(s))^{*}$, so η is a homomorphism that identifies the involutive semigroup with a subset of $\ell^{1}(S)$, so it embeds S in the Banach-*-algebra .

