
Lecture Notes from October 06, 2022
taken by Phuong Tran

Last time

• The spectral theorem for normal operator on finite dimensional Hilbert spaces,

• Involutive algebras, Banach-*-algebra , C∗-algebra

Warm up:

2.2 Question. If A is involutive algebra, and 1 is a left unit i.e. 1a = a for each a ∈ A, then
show 1 is unique left unit and it is also right unit.

• right unit: we start from 11∗ = 1∗, taking (.)∗ both sides, we obtain

(11∗)∗ = (1∗)∗ =⇒ 11∗ = 1

Thus 1 = 1∗. We then have a1 = (1∗a∗)∗ = (a∗)∗ = a.

• uniqueness: Now we see if there is (another) left unit e, then

e
1 is right unit

= e1
e is left unit

= 1

2.3 Lemma. Let A be an involutive algebra, then the following properties hold:

(1) Hermitian elements in A are normal,

(2) An element of the form xx∗ for x ∈ A, is Hermitian

(3) The product of two Hermitian elements x and y is Hermitian if and only if xy = yx

(4) A = An⊕ iAn i.e. each a ∈ A has a unique decomposition a = b+ ic with b, c Hermitian

(5) An element a = b+ c, b = b∗, c = c∗ is normal if and only if bc = cb

(6) A has a unit, and x has an inverse, then (x−1)∗ = (x∗)−1

(7) If ‖.‖ is a sub-multiplicative norm onA and ‖x‖2 ≤ ‖x∗ x‖ for each x ∈ A, then ‖x∗‖ = ‖x‖
and ‖x∗ x‖ = ‖x‖2

2.4 Remark. iAn is all the skew Hermitian with An is Hermitian
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Proof.

(1) Let a ∈ A be Hermitian i.e a = a∗, then aa∗ = aa = a∗ a∗ = a∗ a. So a is normal.

(2) Let x ∈ A. Then we have (x x∗)∗ = (x∗)∗ x∗ = x x∗, so x x∗ is Hermitian.

(3) Let x, y ∈ A be Hermitian.
If xy = yx, then (xy)∗ = (yx)∗ =⇒ (xy)∗ = x∗y∗ = xy since x = x∗, y = y∗.
Conversely, if xy is Hermitian, then xy = (xy)∗ = y∗x∗ = yx since x = x∗, y = y∗.

(4) Given a ∈ A, we write b = a+a∗

2
and c = a−a∗

2i
. Then b, c are Hermitian and a = b+ ic.

Moreover, if a = b ′ + ic ′ with (b ′)∗ = b ′ and (c ′)∗ = c ′ then by taking Hermitian and
antiHerimitian parts give b ′ = b and c ′ = c.

(5) We have

aa∗ = (b+ ic) (b− ic)︸ ︷︷ ︸
b∗−ic∗

a∗ a = (b− ic)︸ ︷︷ ︸
b∗−ic∗

(b+ ic)

= b2 + icb− ibc︸ ︷︷ ︸
i(cb−bc)

+c2 = b2−icb+ ibc︸ ︷︷ ︸
−i(cb−bc)

+c2

By comparing these expressions, a∗ a = aa∗ if and only if cb− bc = 0 or cb = bc

(6) If A has a unit 1 and x is invertible. Then

x−1 x = x x−1 = 1

then applying the involution,

x∗ (x−1)∗ = (x−1)∗ x∗ = 1∗ = 1

Hence x∗ has an inverse which can be identified as (x−1)∗.

(7) First, we note that for x ∈ A,

‖x‖2 ≤ ‖x∗ x‖ ≤ ‖x∗‖‖x‖

So we know, ‖x‖ ≤ ‖x∗‖. Thus, implies that

‖x‖ ≤ ‖x∗‖ ≤ ‖(x∗)∗‖ = ‖x‖

Hence, equality holds throughout. Returning to the first chain of inequality gives

‖x‖2 ≤ ‖x∗ x‖ ≤ ‖x∗‖‖x‖ ≤ ‖x‖‖x‖ = ‖x‖2

So the quality holds between ‖x‖2 and ‖x∗ x‖
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2.5 Example (for C∗-algebra ). Let X be a locally Hausdorff space, C0(X) is the set of the
continuous on X such that for each ε > 0, there is a compact set K, if x /∈ K, |f(x)| < ε. We
equip C0(X) with a norm

‖f‖∞ = sup
x∈X

|f(x)|

This is a closed subspace of the bounded, continuous functions on X. With f∗(x) = f(x), this
becomes C∗-algebra

Proof.

• Completeness:
Consider a Cauchy sequence {fn}n∈N ⊂ C0(X). Then we have

‖fn − fm‖∞ = sup
x∈X

|fn(x) − fm(x)|→ 0 as n,m→∞
Define f : X→ C as f(x) = lim

n→∞ fn(x). Then |fn(x) − f(x)|→ 0 as n→∞
First, we show that lim

n→∞ fn = f. We have that

‖f− fn‖∞ = sup
x∈X

|f(x) − fn(x)| = ‖f− fn‖∞ = sup
x∈X

|f(x) − fm(x) + fm(x) − fn(x)|

≤ sup
x∈X

|f(x) − fm(x)|︸ ︷︷ ︸→ 0
since f(x)= lim

m→∞ fm(x)

+ sup
x∈X

|fm(x) − fn(x)|︸ ︷︷ ︸
n,m→∞−−−−→0

since fn is Cauchy

−→ 0 as n,m→∞
Next, we show that f ∈ C0(X).
Since fn ∈ C0(X), then fn is continuous at x ∈ X. Given ε > 0, there is δ > 0 such that
for all y ∈ X, ‖x − y‖ < δ, implies that |fn(x) − fn(y)| < ε. With x ∈ X and same
condition such that ‖x− y‖ < δ, we have

|f(x) − f(y)| = | lim
n→∞ fn(x) − lim

n→∞ fn(y)|
≤ lim

n→∞ |fn(x) − fn(y)| < ε

Thus, f is continuous on X. Hence f ∈ C0(X) because for each ε > 0, there is a compact
set K, such that if x /∈ K, |f(x)| = | lim

n→∞ fn(x)| ≤ lim
n→∞ |fn(x)| < ε (same compact set K

in fn ∈ C0(X) condition).

• Now, we show that C0(X) is an algebra. Let f, g ∈ C0(X), then

‖f · g‖∞ = sup
x∈X

|f(x)g(x)| ≤ sup
x∈X

(
sup
x∈X

|f(x)| |g(x)|

)
= sup

x∈X
|f(x)|

(
sup
x∈X

|g(x)|

)
= ‖f‖∞‖g‖∞
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• Next, for f ∈ C0(X), f∗(x) = f(x). We have

‖f∗‖∞ = sup
x∈X

|f∗(x)| = sup
x∈X

|f(x)| = sup
x∈X

|f(x)| = ‖f‖∞
• Finally, we show C0(X) is C∗-algebra . For each f ∈ C0(X), consider

f∗ · f(x) = f∗(x) f(x) = f(x) f(x) = |f(x)|2

taking sup over X, we get

‖f∗ · f‖∞ = sup
x∈X

|f(x)|2 ≥
(
sup
x∈X

|f(x)|

)2
= ‖f‖2∞

Hence by Lemma 2.3(7), this completes the proof.

For this C∗-algebra , the map δx : C0(X) → C with f 7→ f(x) is a (nontrivial) character
on C0(X). This is because of Urysohn’s lemma which guarantees the existence of a function

f ∈ C0(X) with f(x) = 1. We will see later, ̂(C0(X)) = {δx : x ∈ X}.
As a special example, if X = N, C0(X) = c0 and ĉ0 = {δn : n ∈ N} ∼= N.

More examples with different types of norm.

2.6 Examples. Let S be an involutive semigroup. Consider `1(S) i.e. the space of all f : S → C
with ‖f‖1 =

∑
s∈S

|f(s)| <∞. ( Note that the set {s ∈ S : f(s) 6= 0} is at most countable).

Equip `1(S) with the convolution

(f ∗ g)(s) =
∑
a,b∈S
ab=s

f(a)g(b)

and let f∗(s) = f(s∗). Then `1(S) becomes a Banach-*-algebra .

Proof.

• First, we see that `1(S) is closed under convolution. Let f, g ∈ `1(S). Then

‖f‖1 =
∑
s∈S

|f(s)| <∞ and ‖g‖1 =
∑
s∈S

|g(s)| <∞
Let Jf = {s ∈ S : f(s) 6= 0} and Jg = {s ∈ S : g(s) 6= 0}. Note that Jf and Jg are at most
countable. Consider

‖f ∗ g‖1 =
∑
s∈S

|f ∗ g(s)| =
∑
s∈S

|
∑
a,b∈S
ab=s

f(a)g(b)|

≤
∑
s∈S

∑
a,b∈S
ab=s

|f(a)| |g(b)| =
∑
a∈S

|f(a)|
∑
b∈S
ab=s

|g(b)|


≤
∑
a∈S

(
|f(a)| ‖g‖1

)
= ‖g‖1 ‖f‖1 <∞

(1)

Thus, f ∗ g ∈ `1(S).
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• Next, we show that `1(S) is a Banach algebra. Consider a Cauchy sequence {fn}n∈N ⊂ `1(S).
Define f : S→ C, f(s) = lim

n→∞ fn(s).
‖f− fn‖1 =

∑
s∈S

|f(s) − fn(s)| =
∑
s∈S

|f(s) − fm(s) + fm(s) − fn(s)|

≤
∑
s∈S

|f(s) − fm(s)|︸ ︷︷ ︸
for each s−−−−−→0

since f(s)= lim
m→∞ fm(s)

+
∑
s∈S

|fm(s) − fn(s)|︸ ︷︷ ︸
n,m→∞−−−−→0

since fn is Cauchy

−→ 0 as n,m→∞
Also,

‖f‖1 =
∑
s∈S

|f(s)| =
∑
s∈S

| lim
n→∞ fn(s)| ≤ lim

n→∞
∑
s∈S

|fn(s)| <∞
Thus, {fn}n∈N converges to f ∈ `1(S). So `1(S) is a Banach space and we then even have
‖f ∗ g‖1 ≤ ‖f‖1‖g‖1 as in equation 1. Hence, it is a Banach algebra.

• And finally, we show `1(S) is a Banach-*-algebra . Let f ∈ `1(S) and f∗(s) = f(s∗). Then

‖f∗‖1 =
∑
s∈S

|f∗(s)| =
∑
s∈S

|f(s∗)| =
∑
s∈S

|f(s∗)|

=
∑
s∗∈S

|f(s)| = ‖f‖1

We than have a homomorphism η : S→ `1(S) that maps s 7→ δs with

δs(t) =

{
1 if s = t

0 elsewhere

For these,

(δs ∗ δt)(x) =
∑
a,b∈S
ab=x

δs(a) δt(b)

=

{
1 if δs(a) = 1 = δt(b)

0 otherwise
=

{
1 if s = a, t = b

0 otherwise
=

{
1 if ab = st = x

0 otherwise

= δst(x)

Since

δ∗s(t) = δs(t
∗) = δs(t

∗) =

{
1 if s = t∗

0 otherwise
=

{
1 if s∗ = (t∗)∗ = t

0 otherwise

= δs∗(t)

then δ∗s = δs∗ , we even have η(s∗) = δs∗ = δ
∗
s = (η(s))∗, so η is a homomorphism that identifies

the involutive semigroup with a subset of `1(S), so it embeds S in the Banach-*-algebra .
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