Lecture Notes from October 11, 2022

taken by Cristian Meraz

Last time

- Properties of Banach *-algebras.
- Examples: $\mathrm{C}_{0}(\mathrm{X})$ and $\ell^{1}(\mathrm{~S})$.

1.0.1 Warm-up

Recall from finite dimensional representations of commutative involutive semigroups, we had deduced that each normal $A \in B\left(\mathbb{C}^{n}\right)$ can be diagonalized, namely, splits into a direct sum of eigenspaces of A.
Consider now, instead, the space $C_{0}(X)$, and let $A \in C_{0}(X)$ act on $\ell^{2}(X)$ by

$$
(A f)(x)=A(x) f(x) .
$$

Recall that for $A \in C_{0}(X)$ we have $A: X \rightarrow \mathbb{C}$ and the involution is given by $A^{*}(x)=\overline{A(x)}$. Then A is normal because $A A^{*}=A^{*} A$ as in complex numbers, and

$$
\begin{aligned}
\left(A A^{*} f\right)(x) & =A(\overline{A(x)} f(x))=A(x) \overline{A(x)} f(x) \\
& =\overline{A(x)} A(x) f(x),
\end{aligned}
$$

hence, $\left(A A^{*} f\right)(x)=\left(A^{*} A f\right)(x)$.
1.6 Question. Does $\ell^{2}(\mathrm{X})$ split into a direct sum of eigenspaces?
1.7 Answer. Yes, we have $\left\{\delta_{x}: x \in X\right\}$ as an orthonormal basis of eigenvectors of A, where

$$
\delta_{x}(y)= \begin{cases}1, & y=x \\ 0, & \text { otherwise }\end{cases}
$$

We have discussed such functions as an orthonormal basis of $\ell^{2}([0,1])$. To see they are eigenvectors of A, note

$$
\begin{aligned}
\left(A \delta_{x}\right)(f(x)) & =A(x) \delta_{x}(x) f(x) \\
& =A(x) f(x) \\
& =(A f)(x)
\end{aligned}
$$

for each $x \in X$.

1.0.2 More examples

1.8 Example (Hermitian case). Let $S=\left(\mathbb{N}_{0},+\right), s^{*}=s$, then $\ell^{1}(S) \simeq \ell^{1}$, and for each $x, y \in$ $\ell^{1}(S)$,

$$
(x * y)_{n}=\sum_{k=0}^{n} x_{k} y_{n-k}
$$

By the Cauchy product (i.e., discrete convolution 'product'),

$$
\Sigma: \ell^{1}(S) \rightarrow \mathbb{C}, \Sigma(x)=\sum_{n=0}^{\infty} x_{n}
$$

gives

$$
\Sigma(x * y)=\Sigma(x) \Sigma(y)
$$

Computing the first few terms, we see that

$$
\begin{aligned}
\Sigma(x * y) & =\sum_{n=0}^{\infty}(x * y)_{n} \\
& =\underbrace{x_{0} y_{0}}_{n=0}+\underbrace{x_{0} y_{1}+x_{1} y_{0}}_{n=1}+\cdots+\underbrace{x_{0} y_{k}+x_{1} y_{k-1}+\cdots+x_{k-1} y_{1}+x_{k} y_{0}}_{n=k}+\cdots \\
& =x_{0}\left(y_{0}+y_{1}+\cdots+y_{k}+\cdots\right)+x_{1}\left(y_{0}+y_{1}+\cdots y_{k}+\cdots\right)+\cdots+x_{k}\left(y_{0}+\cdots\right)+\cdots \\
& =x_{0}\left(\sum_{n=0}^{\infty} y_{n}\right)+\cdots+x_{k}\left(\sum_{n=0}^{\infty} y_{n}\right)+\cdots \\
& =\left(\sum_{n=0}^{\infty} x_{n}\right)\left(\sum_{n=0}^{\infty} y_{n}\right)=\Sigma(x) \Sigma(y) .
\end{aligned}
$$

Thus, Σ is a homomorphism. Moreover, since $\Sigma\left(x^{*}\right)=\overline{\Sigma(x)}, \Sigma$ is a character of $\ell^{1}(S)$. Our goal is to describe all characters of $\ell^{1}(S)$.

To this end, let

$$
\chi: \ell^{1}(S) \rightarrow \mathbb{C}
$$

be a (bounded) character, and consider

$$
\eta: S \rightarrow \ell^{1}(S), \eta(s)=\delta_{s},
$$

where $\delta_{s} \in \ell^{1}(S)$ is the element that is one at position s and zero elsewhere. In this way we embed S into $\ell^{1}(S)$. Then

$$
\chi \circ \eta: S \rightarrow \mathbb{C}
$$

is a character on S. To see this, let $s, t \in S$, and write $\psi=\chi \circ \eta: S \rightarrow \mathbb{C}$. Then $\psi(s)=$ $(\chi \circ \eta)(s)=\chi\left(\delta_{s}\right)$ and $\psi(t)=(\chi \circ \eta)(t)=\chi\left(\delta_{t}\right)$, so that

$$
\begin{aligned}
\psi(s) \psi(t) & =\chi\left(\delta_{s}\right) \chi\left(\delta_{t}\right) \\
& =\chi\left(\delta_{s} \delta_{t}\right) \quad\left(\chi \text { is a homomorphism on } \ell^{1}(\mathrm{~S})\right) \\
& =\chi\left(\delta_{s t}\right) \quad(\delta \text { is a homomorphism on } \mathrm{S}) \\
& =(\chi \circ \eta)(s t) \\
& =\psi(s t) .
\end{aligned}
$$

Moreover, by $\operatorname{Span}\{\eta(s)\}$-the functions of finite support— being dense in $\ell^{1}(S)$, and χ continuous, for $f \in \ell^{1}(S)$, we have

$$
\begin{aligned}
\chi(f) & =\chi\left(\sum_{s \in S} f(s) \eta(s)\right) \\
& =\sum_{s \in S} f(s) \chi(\eta(s)),
\end{aligned}
$$

Since the dual space of $\ell^{1}(S)$ is $\ell^{\infty}(S)$, we note that $\chi \circ \eta: S \rightarrow \mathbb{C}$ is necessarily bounded.
Conversely, each bounded character $\gamma: S \rightarrow \mathbb{C}$ defines by

$$
\chi(f)=\sum_{s \in S} f(s) \gamma(s)
$$

a (bounded) character on $\ell^{1}(S)$, hence we have

$$
\widehat{\left(\ell^{1}(\mathrm{~S})\right)}=\widehat{\mathrm{S}} \cap \ell^{\infty}(\mathrm{S}) .
$$

The upshot is: In our case, $S=\mathbb{N}_{0}$, and

$$
\widehat{\left(\ell^{1}(\mathrm{~S})\right)_{0}} \simeq[-1,1] .
$$

1.9 Example (Wiener algebra). Consider $\ell^{1}(\mathbb{Z})$, and let, for $x \in \ell^{1}(\mathbb{Z})$,

$$
\left(x^{*}\right)_{n}=\overline{\left(x_{-n}\right)}, \quad \text { and } \quad(x * y)_{n}=\sum_{k \in \mathbb{Z}} x_{k} y_{n-k}
$$

We can view this algebra via the Fourier transform,

$$
F(x)(z)=\sum_{n \in \mathbb{Z}} x_{n} z^{n}, \quad|z|=1
$$

then $|F(x)(z)| \leq\|x\|_{1}<\infty$, and the series converges uniformly on $S^{1}=\{z \in \mathbb{C}:|z|=1\}$ to a continuous function. Engineers call it the z-transform.

Let us abbreviate

$$
\hat{x}(z)=\sum_{n \in \mathbb{Z}} x_{n} z^{n} .
$$

We recall $C\left(S^{1}\right)$ is a C^{*}-algebra with $f^{*}(z)=\overline{f(z)},|z|=1$, and using pointwise multiplication as product. In particular, the Fourier transform maps ℓ^{1} into $C\left(S^{1}\right)$.
1.10 Claim. The Fourier transform map $F: \ell^{1}(\mathbb{Z}) \rightarrow C\left(S^{1}\right)$ is a homomorphism of Banach *-algebras.

Proof. We know that $\|\hat{x}\| \leq\|x\|_{1}$, therefore F is bounded and linear. Furthermore, write

$$
\widehat{x^{*}(z)}=\sum_{n \in \mathbb{Z}} \overline{x_{-n}} z^{n} .
$$

Realizing n is just a dummy variable, let $\mathrm{n}^{\prime}=-\mathrm{n}$ and substitute

$$
\begin{aligned}
\widehat{x^{*}(z)} & =\sum_{n^{\prime} \in \mathbb{Z}} \overline{x_{-n^{\prime}}} z^{n^{\prime}} \\
& =\sum_{n \in \mathbb{Z}} \overline{x_{n}} z^{-n} \\
& =\sum_{n \in \mathbb{Z}} \overline{x_{n} z^{-n}} \\
& =(\widehat{x})^{*}(z) .
\end{aligned}
$$

Moreover,

$$
\begin{aligned}
\hat{x}(z) \hat{y}(z) & =\sum_{n \in \mathbb{Z}} x_{n} z^{n} \sum_{\mathfrak{m} \in \mathbb{Z}} y_{\mathfrak{m}} z^{m} \\
& =\sum_{n \in \mathbb{Z}}\left(\sum_{k \in \mathbb{Z}} x_{k} y_{n-k}\right) z^{n} \\
& =\widehat{(x * y)}(z) .
\end{aligned}
$$

The map F is invertible on its range, because given any $f: S^{1} \rightarrow \mathbb{C}, f$ continuous, we consider

$$
\check{f}(n)=\frac{1}{2 \pi} \int_{0}^{2 \pi} f\left(e^{i t}\right) e^{-i n t} d t
$$

For $x \in \ell^{1}(\mathbb{Z})$ we can compute $f=\hat{x}$, and we note that

$$
\check{f}(n)=\frac{1}{2 \pi} \int_{0}^{2 \pi}\left(\sum_{m \in \mathbb{Z}} x_{m} e^{i m t}\right) e^{-i n t} d t=x_{n}
$$

because summation and integration can be interchanged.
1.11 Question. Is this map onto?
1.12 Answer. No, $C\left(S^{1}\right)$ is larger than the image of $\ell^{1}(\mathbb{Z})$ inside of $C\left(S^{1}\right)$. Conversely, for any $f \in C\left(S^{1}\right)$, \check{f} may not be in $\ell^{1}(\mathbb{Z})$. We conclude that F maps $\ell^{1}(\mathbb{Z})$ to a proper subalgebra of $C\left(S^{1}\right)$; we call it the Wiener algebra.

