Lecture Notes from October 13, 2022

taken by Anshi Gupta

Last Time

Banach-* - algebras and characters by examples.
Warm up: Consider $l^{1}(\mathbb{Z})$ as Banach $-*-$ algebra with $x * y$ defined by convolution and $\left(x^{*}\right)_{k}=\overline{\left(x_{-k}\right)}$ for $x \in l^{1}(\mathbb{Z}), k \in \mathbb{Z}$.
4.5 Question. What are the characters on this Banach-*- algebra?

Again, we use $\eta: k \rightarrow \delta_{k}$, then for $f \in l^{1}(\mathbb{Z})$, a (bounded) character χ,

$$
\begin{aligned}
\chi(f) & =\chi\left(\sum_{k \in \mathbb{Z}} f(k) \eta(k)\right) \\
& =\sum_{k \in \mathbb{Z}} f(k) \chi(\eta(k))
\end{aligned}
$$

and by $\|\chi\|<\infty,\left(l^{1}(\mathbb{Z})\right)^{\prime}=l^{\infty}(\mathbb{Z})$, we know that $\chi \circ \eta$ is bounded and $\chi \circ \eta$ is a character on \mathbb{Z} from the embedding of \mathbb{Z} in the algebra. Hence, determined by $\chi \circ \eta(1)=z \in S^{1}=\{w:|w|=1\}$. Conversely, if γ is a character on \mathbb{Z}, then $\chi(f)=\sum_{k \in \mathbb{Z}} f(k) \gamma(k)$ defines a character on $l^{1}(\mathbb{Z})$. We summarize, $\widehat{l^{1}(\mathbb{Z})} \cong \widehat{\mathbb{Z}} \cong S^{1}$.

Consequently, we can map $l^{1}(\mathbb{Z})$ to a space in $\mathbb{C}\left(S^{1}\right)$, using that each character γ of \mathbb{Z} is of the form $k \mapsto \mathbb{Z}^{k}$, hence we can define $\hat{f}(z)=\sum_{k \in \mathbb{Z}} f(k) z^{k}$.
Next, we will see that we will see that we can relate Banach-* - Algebras with the Fourier transform in a similar way.
4.6 Example. We first construct a algebra with involution. Let $\mathrm{C}_{\mathrm{c}}\left(\mathbb{R}^{n}\right)$ be the space of continuous functions with compact support. Define $f^{*}(x)=\overline{f(-x)}$ and for $x \in \mathbb{R}^{n} ; f, g \in C_{c}\left(\mathbb{R}^{n}\right) ;(f *$ $g)(x)=\int_{\mathbb{R}^{n}} f(y) g(x-y) d \lambda(y)$, where λ is a Lebesgue measure. For such f and $g, f * g$ is again in $C_{c}\left(\mathbb{R}^{n}\right)$. This is because, since g is continuous so for given $\epsilon>0, \exists \delta>0$ such that $\|x-y\|<\delta \Longrightarrow|g(x)-g(y)|<\epsilon$.
Now, f is continuous on a compact set, this implies f is bounded. Therefore, $\exists \mathrm{M}>0$ such that
$\|f(x)\|<M$. Consider,

$$
\begin{aligned}
\|f * g(x)-f * g(y)\| & =\left\|\int_{\mathbb{R}^{n}} f(z)[g(x-z)-g(y-z)] d \lambda(z)\right\| \\
& \leq \int_{\mathbb{R}^{n}}\|f(z)\|\|[g(x-z)-g(y-z)]\| d \lambda(z) \\
& \leq M \epsilon \int_{\mathbb{R}^{n}} d \lambda(z) \\
& =M \in \lambda\left(\mathbb{R}^{n}\right)
\end{aligned}
$$

since g being continuous and compactly supported is uniformly continuous. Therefore, $f * g$ is continuous. Also, $\operatorname{Supp}(f * g) \subset \operatorname{Supp}\left(f^{*}\right) \cup \operatorname{Supp}\left(g^{*}\right)$, and since union of two compact sets is compact, $f * g$ is compact. Hence, $f * g \in C_{c}\left(\mathbb{R}^{n}\right)$. This space forms a commutative involutive algebra.
We show associativity,

$$
\begin{aligned}
((f * g) * h)(x) & =\int_{\mathbb{R}^{n}} f(x * y)(y) h(x-y) d \lambda(y) \\
& =\int_{\mathbb{R}^{n}} \int_{\mathbb{R}^{n}} f(z) g(y-z) d \lambda(z) h(x-y) d \lambda(y) \\
& \stackrel{F u b i n i}{=} \int_{\mathbb{R}^{n}} f(z) \int_{\mathbb{R}^{n}} g(y-z) h(x-y) d \lambda(y) d \lambda(z) \\
& \stackrel{y-z=u}{=} \int_{\mathbb{R}^{n}} f(z) \int_{\mathbb{R}^{n}} g(u) h(x-u-z) d \lambda(u) d \lambda(z) \\
& =\int_{\mathbb{R}^{n}} f(z) g * h(x-z) d \lambda(z) \\
& =(f *(g * h))(x)
\end{aligned}
$$

Moreover,

$$
\begin{aligned}
(f * g) *(x) & =\overline{\int_{\mathbb{R}^{n}} f(y) g(x-y) d \lambda(y)} \\
& =\int_{\mathbb{R}^{n}} \overline{f(y) g(-x-y)} d \lambda(y) \\
& \stackrel{u}{=-y}=\int_{\mathbb{R}^{n}} \overline{f(-u) g(-x+u)} d \lambda(u) \\
& =\int_{\mathbb{R}^{n}} f^{*}(u) g^{*}(x-u) d \lambda(u) \\
& =\left(f^{*} * g^{*}\right)(x)
\end{aligned}
$$

Together with,

$$
\begin{aligned}
(f * g)(x) & =\int_{\mathbb{R}^{n}} f(y) g(y-x) d \lambda(y) \\
& \stackrel{u=-y}{=} \int_{\mathbb{R}^{n}} f(-u) g(x+u) d \lambda(u) \\
& \stackrel{w=x+u}{=} \int_{\mathbb{R}^{n}} g(w) f(x-w) d \lambda(w) \\
& =(g * f)(x)
\end{aligned}
$$

Hence, $C_{c}\left(\mathbb{R}^{n}\right)$ forms an involutive algebra.
Next, we define, $\|f\|_{1}=\int_{\mathbb{R}^{n}}|f(x)| \mathrm{d} \lambda(x)$ We claim this norm is sub - multiplicative. To see this, consider $f, g \in C_{c}\left(\mathbb{R}^{n}\right)$

$$
\begin{aligned}
\|f * g\|_{1} & =\int_{\mathbb{R}^{n}}\left|\int_{\mathbb{R}^{n}} f(y) g(x-y) d \lambda(y)\right| d \lambda(x) \\
& \leq \int_{\mathbb{R}^{n}} \int_{\mathbb{R}^{n}}|f(y) \|(x-y)| d \lambda(y) d \lambda(x) \\
& \stackrel{F u b n i}{=} \int_{\mathbb{R}^{n}}|f(y)| \int_{\mathbb{R}^{n}}|g(x-y)| d \lambda(x) d \lambda(y) \\
& =\int_{\mathbb{R}^{n}}|f(y)|\|g\|_{1} d \lambda(y) \\
& =\|g\|_{1} \int_{\mathbb{R}^{n}}|f(y)| d \lambda(y) \\
& =\|g\|_{1}\|f\|_{1}
\end{aligned}
$$

We also observe, $\left\|\mathbf{f}^{*}\right\|_{1}=\|f\|_{1}$. Since

$$
\begin{aligned}
\left\|f^{*}\right\|_{1} & =\int_{\mathbb{R}^{n}}|\overline{f(-x)}| \mathrm{d} \lambda(x) \\
& =\int_{\mathbb{R}^{n}}|f(-x)| \mathrm{d} \lambda(x) \\
& \stackrel{u=-x}{=} \int_{\mathbb{R}^{n}}|f(u)| \mathrm{d} \lambda(u) \\
& =\|f\|_{1}
\end{aligned}
$$

Now, taking $L^{1}\left(\mathbb{R}^{n}\right)$ to be the completion of $C_{c}\left(\mathbb{R}^{n}\right)$, then by continuity of $L^{1}\left(\mathbb{R}^{n}\right)$, we can extend $f * g$ and $f \rightarrow f^{*}$ to $L^{1}\left(\mathbb{R}^{n}\right)$ since if f_{n} and g_{n} are two Cauchy sequences in $C_{c}\left(\mathbb{R}^{n}\right)$ such that $f_{n} \rightarrow f$ and $g_{n} \rightarrow g$ in $L^{1}\left(\mathbb{R}^{n}\right)$ and g_{n} is continuous on $B(0, r)$ for some $r>0$, we have

$$
\begin{aligned}
\left\|f_{n} * g_{\mathfrak{n}}-f_{m} * g_{\mathfrak{m}}\right\|_{1} & =\left\|\int_{\mathbb{R}^{n}} f_{\mathfrak{n}}(y) g_{\mathfrak{n}}(x-y) d \lambda(y)-\int_{\mathbb{R}^{n}} f_{m}(y) g_{\mathfrak{m}}(x-y) d \lambda(y)\right\|_{1} \\
& \leq \int_{\mathbb{R}^{n}}\left\|f_{n}(y)-f_{m}(y)\right\|\left\|g_{\mathfrak{n}}(x-y)-g_{\mathfrak{m}}(x-y)\right\|_{1} d \lambda(y)
\end{aligned}
$$

This implies $\left\|f_{n} * g_{n}-f_{m} * g_{m}\right\|_{1} \rightarrow 0$ as $n \rightarrow \infty$ as f_{n} and g_{n} are Cauchy. Hence, $f_{n} * g_{n}$ is Cauchy and convergent in $L^{1}\left(\mathbb{R}^{n}\right)$. Also, $f_{n} * g_{n}$ is uniformly continuous on $B(0, r)$ since it is continuous and compactly supported. Restricting the the convolution to $B(0, r)$, we get

$$
\begin{aligned}
\left\|f_{n} * g_{n}-f * g\right\|_{1} & =\left\|\int_{B(0, r)} f_{n}(y) g_{n}(x-y) d \lambda(y)-\int_{B(0, r)} f(y) g(x-y) d \lambda(y)\right\|_{1} \\
& \leq \int_{B(0, r)}\left\|f_{n}(y)-f(y)\right\|\left\|g_{n}(x-y)-g(x-y)\right\|_{1} d \lambda(y)
\end{aligned}
$$

Since, $f_{n} \rightarrow f$ and $g_{n} \rightarrow g$, we have $f_{n} * g_{n} \rightarrow f * g$ on $B(0, r)$. It converges on $L^{1}\left(\mathbb{R}^{n}\right)$, by taking the union of all the balls of radius $\mathrm{r}>0$ and, we obtain a Banach $-*-$ algebra. This algebra is also called the L^{1} - algebra of \mathbb{R}^{n}.
Next, we want to study the characters of this algebra. We consider an example

4.7 Example.

$$
\begin{gathered}
x_{x}: \mathbb{R}^{n} \rightarrow S^{1} \\
y \mapsto e^{i x y}
\end{gathered}
$$

Then, χ_{x} is a continuous non trivial group homomorphism from \mathbb{R}^{n} to S^{1}, hence a character on \mathbb{R}^{n}. By boundedness of χ_{x}, we obtain $\tilde{\chi_{x}}=\int_{\mathbb{R}^{n}} f(y) e^{x \cdot y} d \lambda(y)$ and we claim $\tilde{\chi_{x}}$ defines a character on $L^{1}(\mathbb{R})$. Indeed,

$$
\begin{aligned}
\tilde{\chi_{x}}\left(f^{*}\right) & =\int_{\mathbb{R}^{n}} \overline{f(-y)} e^{i x . y} d \lambda(y) \\
& \stackrel{u=-y}{=} \int_{\mathbb{R}^{n}} \overline{f(u)} e^{-i x . u} d \lambda(u) \\
& =\int_{\mathbb{R}^{n}} \overline{f(u) e^{u x . u} d \lambda(u)} \\
& =\frac{\tilde{\chi_{x}}(f)}{}
\end{aligned}
$$

