Lecture Notes from October 13, 2022

taken by Anshi Gupta

Last Time

Banach - * - algebras and characters by examples.

Warm up: Consider $l^1(\mathbb{Z})$ as Banach- * - algebra with x * y defined by convolution and $(x^*)_k = \overline{(x_{-k})}$ for $x \in l^1(\mathbb{Z}), k \in \mathbb{Z}$.

4.5 Question. What are the characters on this Banach-*- algebra?

Again, we use $\eta: k \to \delta_k$, then for $f \in l^1(\mathbb{Z})$, a (bounded) character χ ,

$$\begin{split} \chi(f) &= \chi(\sum_{k \in \mathbb{Z}} f(k) \eta(k)) \\ &= \sum_{k \in \mathbb{Z}} f(k) \chi(\eta(k)) \end{split}$$

and by $\|\chi\| < \infty$, $(l^1(\mathbb{Z}))' = l^{\infty}(\mathbb{Z})$, we know that $\chi \circ \eta$ is bounded and $\chi \circ \eta$ is a character on \mathbb{Z} from the embedding of \mathbb{Z} in the algebra. Hence, determined by $\chi \circ \eta(1) = z \in S^1 = \{w : |w| = 1\}$. Conversely, if γ is a character on \mathbb{Z} , then $\chi(f) = \sum_{k \in \mathbb{Z}} f(k)\gamma(k)$ defines a character on $l^1(\mathbb{Z})$. We summarize, $\widehat{l^1(\mathbb{Z})} \cong \widehat{\mathbb{Z}} \cong S^1$.

Consequently, we can map $l^1(\mathbb{Z})$ to a space in $\mathbb{C}(S^1)$, using that each character γ of \mathbb{Z} is of the form $k \mapsto \mathbb{Z}^k$, hence we can define $\hat{f}(z) = \sum_{k \in \mathbb{Z}} f(k) z^k$. Next, we will see that we will see that we can relate Banach-*- Algebras with the Fourier transform in a similar way.

4.6 Example. We first construct a algebra with involution. Let $C_c(\mathbb{R}^n)$ be the space of continuous functions with compact support. Define $f^*(x) = \overline{f(-x)}$ and for $x \in \mathbb{R}^n$; $f, g \in C_c(\mathbb{R}^n)$; $(f * g)(x) = \int_{\mathbb{R}^n} f(y)g(x-y)d\lambda(y)$, where λ is a Lebesgue measure. For such f and g, f * g is again in $C_c(\mathbb{R}^n)$. This is because, since g is continuous so for given $\varepsilon > 0$, $\exists \delta > 0$ such that $||x-y|| < \delta \implies |g(x) - g(y)| < \varepsilon$.

Now, f is continuous on a compact set, this implies f is bounded. Therefore, $\exists M > 0$ such that

 $\|f(x)\| < M$. Consider,

$$\begin{split} \|f * g(x) - f * g(y)\| &= \|\int_{\mathbb{R}^n} f(z)[g(x - z) - g(y - z)]d\lambda(z)\| \\ &\leq \int_{\mathbb{R}^n} \|f(z)\|\|[g(x - z) - g(y - z)]\|d\lambda(z) \\ &\leq M\varepsilon \int_{\mathbb{R}^n} d\lambda(z) \\ &= M\varepsilon\lambda(\mathbb{R}^n) \end{split}$$

since g being continuous and compactly supported is uniformly continuous. Therefore, f * g is continuous. Also, $Supp(f * g) \subset Supp(f^*) \cup Supp(g^*)$, and since union of two compact sets is compact, f * g is compact. Hence, $f * g \in C_c(\mathbb{R}^n)$. This space forms a commutative involutive algebra.

We show associativity,

$$\begin{aligned} ((f*g)*h)(x) &= \int_{\mathbb{R}^n} f(x*y)(y)h(x-y)d\lambda(y) \\ &= \int_{\mathbb{R}^n} \int_{\mathbb{R}^n} f(z)g(y-z)d\lambda(z)h(x-y)d\lambda(y) \\ \stackrel{\text{Fubini}}{=} \int_{\mathbb{R}^n} f(z) \int_{\mathbb{R}^n} g(y-z)h(x-y)d\lambda(y)d\lambda(z) \\ \stackrel{y-z=u}{=} \int_{\mathbb{R}^n} f(z) \int_{\mathbb{R}^n} g(u)h(x-u-z)d\lambda(u)d\lambda(z) \\ &= \int_{\mathbb{R}^n} f(z)g*h(x-z)d\lambda(z) \\ &= (f*(g*h))(x) \end{aligned}$$

Moreover,

$$(f * g) * (x) = \overline{\int_{\mathbb{R}^n} f(y)g(x - y)d\lambda(y)}$$
$$= \int_{\mathbb{R}^n} \overline{f(y)g(-x - y)}d\lambda(y)$$
$$\overset{u = -y}{=} \int_{\mathbb{R}^n} \overline{f(-u)g(-x + u)}d\lambda(u)$$
$$= \int_{\mathbb{R}^n} f^*(u)g^*(x - u)d\lambda(u)$$
$$= (f^* * g^*)(x)$$

Together with,

$$(f * g)(x) = \int_{\mathbb{R}^n} f(y)g(y - x)d\lambda(y)$$
$$\stackrel{u = -y}{=} \int_{\mathbb{R}^n} f(-u)g(x + u)d\lambda(u)$$
$$\stackrel{w = x + u}{=} \int_{\mathbb{R}^n} g(w)f(x - w)d\lambda(w)$$
$$= (g * f)(x)$$

Hence, $C_c(\mathbb{R}^n)$ forms an involutive algebra.

Next, we define, $\|f\|_1=\int_{\mathbb{R}^n}|f(x)|d\lambda(x)$ We claim this norm is sub - multiplicative. To see this, consider $f,g\in C_c(\mathbb{R}^n)$

$$\begin{split} \|f * g\|_{1} &= \int_{\mathbb{R}^{n}} |\int_{\mathbb{R}^{n}} f(y)g(x-y)d\lambda(y)|d\lambda(x) \\ &\leq \int_{\mathbb{R}^{n}} \int_{\mathbb{R}^{n}} |f(y)||(x-y)|d\lambda(y)d\lambda(x) \\ &\stackrel{\text{Fubni}}{=} \int_{\mathbb{R}^{n}} |f(y)| \int_{\mathbb{R}^{n}} |g(x-y)|d\lambda(x)d\lambda(y) \\ &= \int_{\mathbb{R}^{n}} |f(y)| \|g\|_{1}d\lambda(y) \\ &= \|g\|_{1} \int_{\mathbb{R}^{n}} |f(y)|d\lambda(y) \\ &= \|g\|_{1} \|f\|_{1} \end{split}$$

We also observe, $\|f^*\|_1 = \|f\|_1.$ Since

$$\begin{split} \|f^*\|_1 &= \int_{\mathbb{R}^n} |\overline{f(-x)}| d\lambda(x) \\ &= \int_{\mathbb{R}^n} |f(-x)| d\lambda(x) \\ &\stackrel{u=-x}{=} \int_{\mathbb{R}^n} |f(u)| d\lambda(u) \\ &= \|f\|_1 \end{split}$$

Now, taking $L^1(\mathbb{R}^n)$ to be the completion of $C_c(\mathbb{R}^n)$, then by continuity of $L^1(\mathbb{R}^n)$, we can extend f * g and $f \to f^*$ to $L^1(\mathbb{R}^n)$ since if f_n and g_n are two Cauchy sequences in $C_c(\mathbb{R}^n)$ such that $f_n \to f$ and $g_n \to g$ in $L^1(\mathbb{R}^n)$ and g_n is continuous on B(0,r) for some r > 0, we have

$$\begin{split} \|f_{n} * g_{n} - f_{m} * g_{m}\|_{1} &= \|\int_{\mathbb{R}^{n}} f_{n}(y)g_{n}(x - y)d\lambda(y) - \int_{\mathbb{R}^{n}} f_{m}(y)g_{m}(x - y)d\lambda(y)\|_{1} \\ &\leq \int_{\mathbb{R}^{n}} \|f_{n}(y) - f_{m}(y)\|\|g_{n}(x - y) - g_{m}(x - y)\|_{1}d\lambda(y) \end{split}$$

This implies $||f_n * g_n - f_m * g_m||_1 \to 0$ as $n \to \infty$ as f_n and g_n are Cauchy. Hence, $f_n * g_n$ is Cauchy and convergent in $L^1(\mathbb{R}^n)$. Also, $f_n * g_n$ is uniformly continuous on B(0, r) since it is continuous and compactly supported. Restricting the the convolution to B(0,r), we get

$$\begin{split} \|f_n * g_n - f * g\|_1 &= \|\int_{B(0,r)} f_n(y)g_n(x-y)d\lambda(y) - \int_{B(0,r)} f(y)g(x-y)d\lambda(y)\|_2 \\ &\leq \int_{B(0,r)} \|f_n(y) - f(y)\| \|g_n(x-y) - g(x-y)\|_1 d\lambda(y) \end{split}$$

Since, $f_n \to f$ and $g_n \to g$, we have $f_n * g_n \to f * g$ on B(0, r). It converges on $L^1(\mathbb{R}^n)$, by taking the union of all the balls of radius r > 0 and,we obtain a Banach - * - algebra. This algebra is also called the L^1 - algebra of \mathbb{R}^n .

Next, we want to study the characters of this algebra. We consider an example

4.7 Example.

$$\chi_x: \mathbb{R}^n \to S^1$$

 $y \mapsto e^{\iota x y}$

Then, χ_x is a continuous non trivial group homomorphism from \mathbb{R}^n to S^1 , hence a character on \mathbb{R}^n . By boundedness of χ_x , we obtain $\tilde{\chi_x} = \int_{\mathbb{R}^n} f(y) e^{ix.y} d\lambda(y)$ and we claim $\tilde{\chi_x}$ defines a character on $L^1(\mathbb{R})$. Indeed,

$$\begin{split} \tilde{\chi_{x}}(f^{*}) &= \int_{\mathbb{R}^{n}} \overline{f(-y)} e^{\iota x.y} d\lambda(y) \\ &\stackrel{u=-y}{=} \int_{\mathbb{R}^{n}} \overline{f(u)} e^{-\iota x.u} d\lambda(u) \\ &= \int_{\mathbb{R}^{n}} \overline{f(u)} e^{\iota x.u} d\lambda(u) \\ &= \overline{\tilde{\chi_{x}}(f)} \end{split}$$