Lecture Notes from October 13, 2022

taken by Dipanwita Bose

Last Time

• Example of Banach *-algebra and it's characters.

Warm up:(Finishing our previous example) Let $l^1(\mathbb{Z})$, and let for $x \in \ell^1(\mathbb{Z})$, $k \in \mathbb{Z}$, $(x^*)_n = \overline{(x_{-n})}$ and $(x * y) = \sum_{n \in} x_n y_{n-k}$ is a Banach *-algebra.

2.51 Question. what the characters on the Banach *-algebra $l^1(\mathbb{Z})$?

Let $\chi : l^1(\mathbb{Z}) \to \mathbb{C}$ be a (bounded) character, and consider $\eta : \mathbb{Z} \to l^1(\mathbb{Z})$, where $k \mapsto \delta_k$ is an embedding from \mathbb{Z} to $l^1(\mathbb{Z})$. Then for $f \in l^1(\mathbb{Z})$,

$$\chi(f) = \chi(\sum_{k \in \mathbb{Z}} f(k) \eta(k)) = \sum_{k \in \mathbb{Z}} f(k) \chi(\eta(k))$$

and by $||x|| < \infty$, $(l^1(\mathbb{Z}))' = l^{\infty}(\mathbb{Z})$, we know $\chi \circ \eta$ is a character on \mathbb{Z} from the embedding of \mathbb{Z} in the algebra, hence determined by

$$\chi \circ \eta(1) = z \in S^1 = \{\omega \in \mathbb{C} : |\omega| = 1\}$$

Conversely, if γ . is a character on \mathbb{Z} , then

$$\chi(f) = \sum_{k \in \mathbb{Z}} f(k) \gamma(k)$$

defines a character on $l^1(\mathbb{Z})$.

We summarize, $(\widehat{\iota^1(\mathbb{Z})}) \cong \widehat{\mathbb{Z}} \cong S^1$.

Consequently, we can map $l^1(\mathbb{Z})$ to a space in $C(S^1)$, using that each character γ on \mathbb{Z} is of the form $k \mapsto z^k$ where ||z|| = 1, hence

$$\chi(f)(k) = \widehat{f}(k) = \sum_{k \in \mathbb{Z}} f(k) z^k.$$

Next we will see that we can relate the Banach *-algebra with the fourier transform in a similar way.

2.52 Example. We first construct an algebra with involution

Let $C_c(\mathbb{R}^n)$ be the space of continuous functions with compact support. Define $f^*(x)=\overline{f(-x)}$ and for $x\in\mathbb{R}^n$, f, $g\in C_c(\mathbb{R}^n)$

$$(f * g)(x) = \int_{\mathbb{R}^n} f(y)g(x - y)d\lambda(y)$$

where λ is the lebesgue measure. For such f, g, $f * g \in C_c(\mathbb{R}^n)$. Let us first look at the continuity of f * g. Since g is continuous, so for any sequence $(x_n)_{n \in \mathbb{N}} \in \mathbb{R}^n$ such that $x_n \to x$, we have $(x_n - y) \to (x - y) \forall y \in \mathbb{R}^n \implies g(x_n - y) \to g(x - y)$ and also $|f(x)| \leq M$ for some $M > 0, \forall x \in \mathbb{R}^n$ since f is continuous on a compact set. Now consider,

$$\begin{split} |f * g(x_n) - f * g(x)| &= |\int_{\mathbb{R}^n} f(y)[g(x_n - y) - g(x - y)] d\lambda y| \\ &\leq \int_{\mathbb{R}^n} |f(y)| |g(x_n - y) - g(x - y)| d\lambda y \\ &\leq M \int_{\mathbb{R}^n} |g(x_n - y) - g(x - y)| d\lambda(y) \end{split}$$

Therefore $|f * g(x_n) - f * g(x)| \to 0$ as $n \to \infty$ which shows that f * g is continuous. Moreover, f * g has compact support as supp(f * g) = supp(f) + supp(g) where supp(f) and supp(g) are compact.

Claim: This space forms a commutative involutive algebra. We show associativity,

$$\begin{split} ((f*g)*h)(x) &= \int_{\mathbb{R}^n} (f*g)(y)h(x-y)d\lambda(y) \\ &= \int_{\mathbb{R}^n} [\int_{\mathbb{R}^n} f(z)g(y-z)d\lambda(z)]h(x-y)d\lambda(y) \\ &= \int_{\mathbb{R}^n} \int_{\mathbb{R}^n} f(z)g(y-z)h(x-y)d\lambda(z)\lambda(y) \\ \stackrel{\text{Fubini}}{=} \int_{\mathbb{R}^n} f(z) \int_{\mathbb{R}^n} g(y-z)h(x-y)d\lambda(y)d\lambda(z) \\ &\stackrel{y-z=u}{=} \int_{\mathbb{R}^n} f(z) \int_{\mathbb{R}^n} g(u)h(x-u-z)d\lambda(u)d\lambda(y)d\lambda(z) \\ &= \int_{\mathbb{R}^n} f(z)g*h(x-z)d\lambda(z) \\ &= (f*(g*h))(x) \end{split}$$

Moreover,

$$(f * g)^{*}(x) = \overline{f * g}(-x)$$

$$= \int_{\mathbb{R}^{n}} \overline{f(y)g(-x-y)} d\lambda(y)$$

$$\stackrel{u=-y}{=} \int_{\mathbb{R}^{n}} \overline{f(-u)g(-x+u)} d\lambda(u)$$

$$= \int_{\mathbb{R}^{n}} \overline{f(-u)g(-(x-u))} d\lambda(u)$$

$$= \int_{\mathbb{R}^{n}} f^{*}(u)g^{*}(x-u) d\lambda(u)$$

$$= (f^{*} * g^{*})(x)$$

together with

$$(f * g)(x) = \int_{\mathbb{R}^n} f(y)g(x - y)d\lambda(y)$$
$$\stackrel{u = -y}{=} \int_{\mathbb{R}^n} f(-u)g(x + u)d\lambda(u)$$
$$\stackrel{\omega = x + u}{=} \int_{\mathbb{R}^n} g(\omega)f(x - \omega)d\lambda(\omega)$$
$$= (g * f)(x)$$

Therefore, we have

$$(f * g)^*(x) = (f^* * g^*)(x) = (g^* * f^*)(x)$$

Hence, $C_c(\mathbb{R}^n)$ forms an involutive algebra.

Next, we define $\|f\|_1 = \int_{\mathbb{R}^n} |f(x)| d\lambda(x)$. Claim: This norm is sub-multiplicative. To see this, consider $f, g \in C_c(\mathbb{R}^n)$,

$$\begin{split} \|f * g\|_{1} &= \int_{\mathbb{R}^{n}} |\int_{\mathbb{R}^{n}} f(y)g(x-y)d\lambda(y)|d\lambda(x)| \\ &\leq \int_{\mathbb{R}^{n}} \int_{\mathbb{R}^{n}} |f(y)||g(x-y)|d\lambda(y)d\lambda y| \\ &\stackrel{fubini}{=} \int_{\mathbb{R}^{n}} f(y)|g(x-y)|d\lambda(x)\lambda(y)| \\ &\stackrel{u=x-y}{=} \|g\|_{1} \|f\|_{1} \end{split}$$

We also observe,

$$\begin{split} \|f^*\|_1 &= \int_{\mathbb{R}^n} |f^*(x)| d\lambda(x) \\ &= \int_{\mathbb{R}^n} |\overline{f(-x)}| d\lambda(x) \\ &= \int_{\mathbb{R}^n} |f(-x)| d\lambda(x) \\ &\overset{u=-x}{=} \int_{\mathbb{R}^n} |f(u)| d\lambda(u) \\ &= \|f\|_1 \end{split}$$

Now taking $L^1(\mathbb{R}^n)$ to be the completion of $C_c(\mathbb{R}^n)$, then by convexity of $L^1(\mathbb{R}^n)$, we can extend f * g and $f \to f^*$ to $L^1(\mathbb{R}^n)$ since if $f_n, g_n \in C_c(\mathbb{R}^n)$ such that $f_n \to f$ in $L^1(\mathbb{R}^n)$ and $g_n \to g$ in $L^1(\mathbb{R}^n)$, then since g_n 's are continuous on $\overline{B(0, R)}$ for some R > 0, we have that

$$\begin{split} \|f_{n} * g_{n} - f_{m} * g_{m}\|_{1} &= \|\int_{\mathbb{R}^{n}} f_{n}(y)g_{n}((x-y)d\lambda(y) - \int_{\mathbb{R}^{n}} f_{m}(y)g_{m}(x-y)d\lambda(y)\|_{1} \\ &\leq \int_{\mathbb{R}^{n}} \|f_{n}(y) - f_{m}(y)\|_{1} \|g_{n}(x-y) - g_{m}(x-y)\|_{1}d\lambda(y) \end{split}$$

So, $\|f_n * g_n - f_m * g_m\|_1 \to 0$ as $n \to \infty$ since f_n, g_n are cauchy and therefore, $f_n * g_n$ is cauchy hence convergent in $L^1(\mathbb{R}^n)$. Also we know that $\underline{f_n * g_n}$ being continuous is uniformly continuous in $\overline{B(0, R)}$. Then restricting the convolution on $\overline{B(0, R)}$, we have

$$\begin{split} \|f_{n} * g_{n} - f * g\|_{1} &= \|\int_{\overline{B(0,R)}} f_{n}(y)g_{n}((x-y)d\lambda(y) - \int_{\overline{B(0,R)}} f(y)g(x-y)d\lambda(y)\|_{1} \\ &\leq \int_{\overline{B(0,R)}} \|f_{n}(y) - f(y)\|_{1} \|g_{n}(x-y) - g(x-y)\|_{1} d\lambda(y) \end{split}$$

Hence, $\|f_n * g_n - f * \underline{g}\|_1 \to 0$ on $\overline{B(0, R)}$. Thus, $f_n * g_n \to f * g$ on $L^1(\mathbb{R}^n)$ by taking the union of all the closed balls $\overline{B(0, R)}$ for R > 0 And we obtain a Banach *-algebra. This algebra is also called the L^1 -algebra of \mathbb{R}^n .

Next, we want of study the characters of this algebra.

We consider an example, $\chi_x : \mathbb{R}^n \to S^1$ given by, $y \mapsto e^{ix.y}$. Then χ_x is a continuous non-trivial group homomorphism from $\mathbb{R}^n \mapsto S^1$. Hence a character on \mathbb{R}^n . By boundedness of χ_x , we obtain

$$\widetilde{\chi_x}(f) = \int_{\mathbb{R}^n} f(y) e^{ix.y} d\lambda(y)$$

We claim that $\widetilde{\chi_x}$ defines a character on $L^1(\mathbb{R}^n)$.

It's easy to see that $\widetilde{\chi_x}$ is linear by linearity of integrals. Also, $\widetilde{\chi_x}$ is non trivial as χ_x is so.

Next, we consider

$$\begin{split} \widetilde{\chi_{x}}((f*g)) &= \int_{\mathbb{R}^{n}} (f*g)(y)e^{ix.y}d\lambda(y) \\ &= \int_{\mathbb{R}^{n}} [\int_{\mathbb{R}^{n}} f(z)g(y-z)d\lambda(z)]e^{ix.y}d\lambda(y) \\ &= \int_{\mathbb{R}^{n}} \int_{\mathbb{R}^{n}} f(z)e^{ix.y}g(y-z)e^{ix.(z-y)}d(z)d\lambda(y) \\ &\stackrel{\text{Fubini}}{=} \int_{\mathbb{R}^{n}} f(y)e^{ix.y}\int_{\mathbb{R}^{n}} g(z-y)e^{ix.(z-y)}d(z)d(y) \\ &= \int_{\mathbb{R}^{n}} f(y)e^{ix.y}\widetilde{\chi_{x}}(g)d(y) \\ &= \widetilde{\chi_{x}}(f)\widetilde{\chi_{x}}(g) \end{split}$$

Moreover,

$$\begin{split} \widetilde{\chi_{x}}(f^{*}) &= \int_{\mathbb{R}^{n}} \overline{f*(-y)} e^{ix.y} d\lambda(y) \\ & \stackrel{u=-y}{=} \int_{\mathbb{R}^{n}} \overline{f(u)} e^{ix.u} d\lambda(u) \\ &= \int_{\mathbb{R}^{n}} \overline{f(u)} e^{ix.u} d\lambda(u) \\ &= \overline{\widetilde{\chi_{x}}((f))} \end{split}$$

Hence $\widetilde{\chi_x}$ is a non-trivial homomorphism from $L^1(\mathbb{R}^n)$ to \mathbb{C} hence a character on $L^1(\mathbb{R}^n)$.