Lecture Notes from October 18, 2022

taken by Joseph Walker

0 The Characters of $L^{1}\left(\mathbb{R}^{n}\right)$

Recall from the previous set of notes that $L^{1}\left(\mathbb{R}^{n}\right)$ is a Banach-*-Algebra such that for $f \in L^{1}\left(\mathbb{R}^{n}\right)$ we have $f^{*}(x)=\overline{f(-x)}$ and $(f * g)(x)=\int_{\mathbb{R}^{n}} f(y) g(y) d \lambda(y)$. To study the characters of the algebra we considered maps $\mathcal{X}_{x}: \mathbb{R}^{n} \rightarrow \mathbb{S}^{1}, y \mapsto e^{i x} y$, which are non-trivial continuous group homomorphisms and thus characters on \mathbb{R}^{n}. The boundedness of these characters inspires the following claim:
0.0.1 Theorem. For $f \in L^{1}\left(\mathbb{R}^{n}\right), \tilde{\mathcal{X}}_{x}(f)=\int_{\mathbb{R}^{n}} f(y) e^{i x y} d \lambda(y)$ defines a character on $L^{1}\left(\mathbb{R}^{n}\right)$

Proof. From last time, we have $\tilde{\mathcal{X}}_{x}\left(f^{*}\right)=\tilde{\mathcal{X}}_{x}\left(\mathrm{f}^{*}\right)$. It remains to show the homomorphism property:

$$
\begin{align*}
\tilde{\mathcal{X}}_{x}(f * g) & =\int_{\mathbb{R}^{n}} \int_{\mathbb{R}^{n}} f(y) g(z-y) d \lambda(y) e^{i x z} d \lambda(z) \\
& =\int_{\mathbb{R}^{n}} \int_{\mathbb{R}^{n}} f(y) e^{i x z} g(z-y) e^{i x(z-y)} d \lambda(y) d \lambda(z) \tag{1}\\
& =\int_{\mathbb{R}^{n}} f(y) e^{i x y} \int_{\mathbb{R}^{n}} g(z-y) e^{i x(z-y)} d \lambda(z) d \lambda(y) \\
& =\tilde{\mathcal{X}}_{x}(f) \tilde{\mathcal{X}}_{x}(g)
\end{align*}
$$

Thus each x gives a character $\tilde{\mathcal{X}}_{\mathrm{x}}$ on $L^{1}\left(\mathbb{R}^{n}\right)$. This induces a map from each $f \in \mathbb{R}^{n}$ to $\hat{f}: \mathbb{R}^{n} \rightarrow \mathbb{C}$ such that $\hat{f}(x)=\tilde{\mathcal{X}}_{x}(f)=\int_{\mathbb{R}^{n}} f(y) e^{i x y} d \lambda(y)$. Hence we define $F: L^{1}\left(\mathbb{R}^{n}\right) \rightarrow \mathcal{C}_{0}\left(\mathbb{R}^{n}\right)$ s.t. $\mathrm{f} \mapsto \hat{\mathrm{f}}$ and summerize the properties of $\tilde{\mathcal{X}}_{\mathrm{x} \in \mathbb{R}^{n}}$ as $\hat{\mathrm{f}^{*}}=\overline{\mathrm{f}}$ and $\left.\hat{(\mathrm{f}} * \mathrm{~g}\right)=\hat{\mathrm{f}} \hat{g}$.

We now determine how to work with Banach-*-algebras with no unit.

1 Warm-Up

Let A be a Banach Algebra with no unit. Define $\tilde{A}=A \times \mathbb{C}=A \oplus \mathbb{C}$ and identify $(a, \lambda)=(a, 0)+(0, \lambda)$. Equip $\tilde{A}(a, \lambda)(b, u)=(a b+\lambda b+u a, \lambda u)$ and norm $\|(a, \lambda)\|=\|a\|=|\lambda|$.

Then \tilde{A} is a Banach algebra with unit $(0,1)$ and in fact $A \cong(A, 0)$ is a Banach subalgebra.
We confirm associativity:

$$
\begin{align*}
((a, \lambda)(b, \mu))(c, \delta) & =(a b+\lambda b+\mu a, \lambda \mu)(c, \delta) \\
& =(a b c+\lambda b c+\mu a c+\delta a b+\delta \lambda b+\delta \mu \lambda+\lambda \mu c, \lambda \mu \delta) \\
& =(a, \lambda)(b c+\delta b+\mu c, \mu \delta) \tag{2}\\
& =(a, \lambda)((b, \mu)(c, \delta))
\end{align*}
$$

Also $(0,1)(a, \lambda)=(a, \lambda)$ for each $(a, \lambda) \in \tilde{A}$ give us the the identity $(0,1)$ for \tilde{A} It remains to show submultiplicativity of the norm: $\operatorname{For}(a, \lambda),(b, \mu) \in \tilde{A}$,

$$
\begin{align*}
\|(a, \lambda)(b, \mu)\| & =\|(a b+\mu a+\lambda b, \lambda \mu \| \\
& =\|a b+\mu a+\lambda b\|+|\lambda \mu| \\
& \leq\|a\|\|b\|+|\mu|\|a\|+|\lambda|\|b\|+|\lambda \| \mu| \tag{3}\\
& =(\|a\|+|\lambda|)(\|b\|+|\mu|) \\
& =\|(a, \lambda)\| \cdot\|(b, \mu)\|
\end{align*}
$$

Thus (2),(3) and the verification of the identity gives us that is a Banach Algebra with identity. 1.0.1 Remark. \tilde{A} was constructed to deal with Banach Algebras A which have no unit. However, what if A does have a unit ? Then $A \cong(A, 0)$ is a Banach sub-algebra on \tilde{A}. However, note that the unit $(0,1) \notin(A, 0)$. So what is the unit of this sub-algebra? The earlier isomorphism seems to suggest that (1,0), with 1 the identity of A, is the identity of this subalgebra. As it turns out, for each $(a, 0) \in(A, 0)$ we have $(1,0)(a, 0)=(a, 0)$ and $(1,0)$ is the identity in the $(A, 0)$ sub-algebra.

2 The Missing Unit

2.0.1 Definition. For a Banach - Algebra $A, a \in A$, we call $\sigma(a)=\left\{a \in \mathbb{C}: a-\lambda 1 \notin C_{0}(A)\right\}$ the spectrum of a and $\rho(a)=\mathbb{C}-\sigma(a)$ the resolvent set. The number $r(a)=\inf \{r>0$: $\left.\sigma(a) \subset B_{r}(0)\right\}$ is called the spectral radius of a.

Let A be a Banach-Algebra. If A has a unit, then we take $\tilde{A}=A$. Otherwise, we take \tilde{A} as described in the warm up. However, we want $\|1\|=1$. To achieve this, we have the following theorem:
2.0.2 Theorem. Let A be a Banach Algebra with unit 1. Then there is a norm $\|\cdot\|_{0}$ that is equivalent to the norm on A with $\|\cdot\|_{0}=1$, and for $\mathrm{a}, \mathrm{b} \in A$, we have $\|\mathrm{ab}\|_{0} \leq\|\mathrm{a}\|_{0} \cdot\|\mathrm{~b}\|_{0}$

Proof. Consider $L_{a}: A \rightarrow A, x \mapsto a x$. Let $\|a\|_{0}=\left\|L_{a}\right\|=\sup _{\|x\| \leq 1}\|a x\| \leq\|a\|$. Note that $\mathrm{L}_{\mathrm{a}} 1=\mathrm{a} 1=\mathrm{a}$. Define $\mathrm{L}: A \rightarrow B(A): a \mapsto \mathrm{~L}_{a}$. Then $\mathrm{L}(x+y)=\mathrm{L}_{x+y}$ where for each $z \in A$ we have $L_{x+y}(z)=(x+y) z=x z+y z=L_{x} z+L_{y} z$, hence $L(x+y)=L_{x+y}=L_{x}+L_{y}=L(x)+L(y)$. Therefore L is linear. Also for each $x, y \in A$ and $a \in A$ we have $L_{a}(x)=L_{a}(y)$ implies $a x=a y$ and thus $a(x-y)=0$ hence $x=y$ (WLOG, let $a=1$). Thus L_{a} is one-to-one.

Now we can construct a norm on A with the map $\|a\|_{0}=\left\|L_{a}\right\|=\sup _{\|x\| \leq 1}\|a x\| \leq\|a\|$ for each $a \in A$. We show that this is indeed a norm.
(Positive Definiteness) For each $a \in A$, if $\|a\|_{0}=0$, then $\left\|L_{a}\right\|=0$, hence $L_{a}=0$ by positive definiteness of the operator norm. Hence we have $a x=0$ for any $x \in A$ thus $a=0$. Also $\|0\|_{0}=\left\|\mathrm{L}_{0}\right\|=\sup _{\|x\| \leq 1}\|0\|=0$. Hence $\|\mathrm{a}\|_{0}=0$ iff $\mathrm{a}=0$
(Homogeneity) For each $a \in A, \lambda \in \mathbb{C}$, we have $\|\lambda a\|_{0}=\left\|L_{\lambda a}\right\|=\sup _{\|x\| \leq 1}\|\lambda a x\|=|\lambda| \sup _{\|x\| \leq 1}\|a x\|=$ $|\lambda|\left\|\mathrm{L}_{\mathrm{a}}\right\|=|\lambda|\|\mathrm{a}\|_{0}$
(Triangle Inequality) For $x, y \in A$ we have $\|x+y\|_{0}=\|L(x+y)\|=\|L(x)+L(y)\| \leq$ $\left\|L_{x}\right\|+\left\|L_{y}\right\|=\|x\|_{0}+\|y\|_{0}$

Thus $\|\cdot\|_{0}$ is positive definite, homogeneous, and satisfies the triangle inequality. Hence $\|\cdot\|_{0}$ is a norm on A. Also, $\|1\|_{0}=\sup _{\|x\| \leq 1}\|1\|=1$ as needed.

This norm is also sub-multiplicative: For $a, b \in A,\|a b\|_{0}=\left\|\mathrm{L}_{a b}\right\|=\left\|\mathrm{L}_{a} \mathrm{~L}_{\mathrm{b}}\right\| \leq\left\|\mathrm{L}_{\mathrm{a}}\right\|\left\|\mathrm{L}_{\mathrm{b}}\right\|$
What is left is to show that the norms $\|\cdot\|$ and $\|\cdot\|_{0}$ are equivalent.
To be continued...

