
Lecture Notes from October 18, 2022
taken by Tanvi Telang

Last time A Banach ∗-algebra and its relation to the Fourier transform. Recall for f ∈ L1(Rn),

χ̃x(f) =

∫
Rn

f(y)eix.ydλ(y)

defines a character. These characters are homomorphisms from the Banach ∗-algebra L1 to C.
We check that it is a homomorphism:

χ̃x(f ∗ g) =
∫
Rn

∫
Rn

f(y)g(z− y)dλ(y)eix·zdλ(z)

=

∫
Rn

∫
Rn

f(y)g(z− y)eix·zdλ(y)dλ(z)

(Fubini ′s gives) =

∫
Rn

f(y)eix·y
∫
Rn

g(z)eix·zdλ(z)dλ(y)

=

∫
Rn

f(y)eix·yχ̃x(g)dλ(y)

Thus, each x ∈ Rn defines a character χ̃x on L1(Rn). This can be used to map f ∈ L1(Rn)
to f̂ : Rn → C; f̂(x) = χ̃x(f) =

∫
Rn f(y)e

ix·ydλ(y). The properties of χ̃x(x ∈ Rn) can be
summarized as

f̂∗ = f̂∗ = ¯̂f, ( ^f ∗ g) = f̂ĝ.

Moreover, f̂ ∈ C0(Rn). Define
F : L1(Rn) → C0(Rn)

f 7→ f̂

F is the Fourier transform on Rn. It is invertible on rangeF so L1(Rn) is isomorphic to a
subalgebra of C0(Rn). However, it is but not boundedly invertible since it is not onto. If it were
onto, then by the bounded inverse theorem the inverse Fourier transform would be continuous
(bounded) as a map from C0 to L1 and this isn’t true. For a counterexample, consider the
function f(x) = sin x

x
e−r|x| on R, As r → 0, the Fourier transform converges to the characteristic

function of a set while the sup norm stays bounded. However, the L1-norm of the function goes
to infinity which means that the inverse is unbounded.

We will also see later that the set {χ̃x}x∈Rn exhausts all characters.
Warm up: (Mystery of the missing unit)
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1.47 Question. What if a Banach ∗-algebra does not have a unit?

Let A be a Banach algebra and let Ã = A × C. Identify this Cartesian product as A × C,
(a, λ) = (a, 0) + (0, λ) equipped with multiplication (a, λ)(b, µ) = (ab + λb + µa, λµ), and
norm ∥(a, λ)∥ = ∥a∥ + |λ|. Then Ã is a Banach algebra with unit (0, 1) and A embeds in Ã,
A ∼= (A, 0) ≤ Ã as a subalgebra.

Note that if A is ∗-algebra also then (a, λ)∗ = (a∗, λ̄) defines an involution on A.
We confirm associativity:

((a, λ)(b, µ))(c, γ) = (ab+ λb+ µa, λµ)(c, γ)

= (abc+ λbc+ µac+ γab+ λµc+ γλb+ γµa+ λµγ)

= (a, λ)(bc+ µc+ γb, γµ)

= (a, λ)((b, µ))(c, γ)).

Also, for all (a, λ) ∈ Ã,
(0, 1)(a, λ) = (a, λ) = (a, λ)(0, 1).

We check sub-multiplicativity next, for all (a, λ), (b, µ) ∈ Ã,

∥(a, λ)(b, µ)∥ = ∥(ab+ λb+ µa, λµ)∥
= ∥ab+ λb+ µa∥+ |λµ)|

≤ ∥ab∥+ |λ|∥b∥+ |µ|∥a∥+ |λµ|

≤ ∥a∥∥b∥+ |λ|∥b∥+ |µ|∥a∥+ |λµ|

≤ ∥a∥(∥b∥+ |µ|) + |λ(∥b∥+ |µ|)

≤ (∥a∥+ |λ|)(∥b∥+ |µ|)

≤ ∥(a, λ)∥∥(b, µ)∥.

Finally, we check completeness: let (an, λn) be a Cauchy sequence in Ã, then there existasN ∈ N
such that ∥(an, λn) − (am, λm∥ → 0 for all n,m > N. Using the norm defined, we get that the
sequences ∥an − am∥ → 0 and |λn − λm| → 0 for all n,m > N giving us Cauchy sequences
(an) ⊂ A and (λn) ⊂ C. By the completeness of A and C, we have a ∈ A and λ ∈ C such that
(an) → a and (λn) → λ. Again, using the norm defined, we have that ∥an −a∥+ |λn − λ| → 0

and thus (an, λn) → (a, λ) in Ã. Using these properties we can proceed with Banach algebras
even without a unit.

However, let us consider the case when A has a unit, 1A, and we embed it into Ã. Due to
uniqueness of the unit, (0, 1) is the only unit in Ã. Consider the element (1A, 0) in Ã, for any
(a, λ) ∈ Ã,

(1A, 0)(a, λ) = (a+ λ, 0)

and so we see that multuplication by (1A, 0) gives us a projection onto A.
The missing unit: If A has a unit, we take Ã = A; if not we take Ã as above.

1.48 Definition (Spectrum). For a Banach algebra A, a ∈ A we call

σ(a) = {λ ∈ C : a− λ1 ̸∈ G(Ã)}

the spectrum of a and ρ(a) = C∖ (σ(a)) the resolvent of a.
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1.49 Definition (Spectral radius). The number r(a) = inf {r > 0 : σ(a) ⊂ Br(0)} is called the
spectral radius of a.

Note: If A does not have a unit and we adjoin 1 to it, then ∥1∥ = 1. We want to achieve
this if A has a unit, if necessary by moving to an equivalent norm.

1.50 Theorem. Let A be a Banach algebra with unit 1, then there exists a norm ∥ · ∥0 that is
equivalent to ∥ · ∥ (the norm on A) and ∥1∥0 = 1, and for a, b ∈ A, ∥ab∥0 ≤ ∥a∥0∥b∥0.

Proof. Consider for a ∈ A, the map La : A → A, x 7→ ax and let

∥a∥0 := ∥La∥ = sup
∥x∥≤1

ax ≤ ∥a∥.

The map
L : A → B(A)

a 7→ La

is linear: ∀x, L(a + b)(x) = La+b(x) = (a + b)(x) = ax + bx = Lax + Lbx =⇒ L(a + b) =
La + Lb. Also, it is one-one: since La.1 = a, if La = Lb then ∀x, ax = bx and for x = 1 we get
a = b. Thus the norm ∥ · ∥0 norm given by ∥a∥0 := ∥La∥ is a well-defined norm on A. Also,

∥1∥0 = ∥1∥ = ∥idA∥ = sup
∥x∥≤1

x = 1

and note that for all x, Lab(x) = (ab)x = a(bx) = LaLb(x) hence Lab = LaLb. Thus

∥ab∥0 = ∥Lab∥
= ∥LaLb∥
≤ ∥La∥∥Lb∥

since the norm on ∥La∥ is the operator norm from B(A) that is sub-multiplicative. Hence
∥ab∥0 ≤ ∥a∥0∥b∥0. Next class, we show the equivalence of these norms.
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