Lecture Notes from October 18, 2022

taken by Tanvi Telang

Last time A Banach *-algebra and its relation to the Fourier transform. Recall for $f \in L^1(\mathbb{R}^n)$,

$$\tilde{\chi}_{x}(f) = \int_{\mathbb{R}^{n}} f(y) e^{ix.y} d\lambda(y)$$

defines a character. These characters are homomorphisms from the Banach *-algebra L^1 to \mathbb{C} . We check that it is a homomorphism:

$$\begin{split} \tilde{\chi}_{x}(f*g) &= \int_{\mathbb{R}^{n}} \int_{\mathbb{R}^{n}} f(y)g(z-y)d\lambda(y)e^{ix\cdot z}d\lambda(z) \\ &= \int_{\mathbb{R}^{n}} \int_{\mathbb{R}^{n}} f(y)g(z-y)e^{ix\cdot z}d\lambda(y)d\lambda(z) \\ (\text{Fubini's gives}) &= \int_{\mathbb{R}^{n}} f(y)e^{ix\cdot y} \int_{\mathbb{R}^{n}} g(z)e^{ix\cdot z}d\lambda(z)d\lambda(y) \\ &= \int_{\mathbb{R}^{n}} f(y)e^{ix\cdot y}\tilde{\chi}_{x}(g)d\lambda(y) \end{split}$$

Thus, each $x \in \mathbb{R}^n$ defines a character $\tilde{\chi}_x$ on $L^1(\mathbb{R}^n)$. This can be used to map $f \in L^1(\mathbb{R}^n)$ to $\hat{f} : \mathbb{R}^n \to \mathbb{C}$; $\hat{f}(x) = \tilde{\chi}_x(f) = \int_{\mathbb{R}^n} f(y) e^{ix \cdot y} d\lambda(y)$. The properties of $\tilde{\chi}_x(x \in \mathbb{R}^n)$ can be summarized as

$$\hat{\mathbf{f}^*} = \hat{\mathbf{f}^*} = \overline{\hat{\mathbf{f}}}, \quad (\mathbf{f} * \mathbf{g}) = \hat{\mathbf{f}} \hat{\mathbf{g}}.$$

Moreover, $\hat{f} \in C_0(\mathbb{R}^n)$. Define

$$F: L^1(\mathbb{R}^n) \to C_0(\mathbb{R}^n)$$
$$f \mapsto \hat{f}$$

F is the Fourier transform on \mathbb{R}^n . It is invertible on rangeF so $L^1(\mathbb{R}^n)$ is isomorphic to a subalgebra of $C_0(\mathbb{R}^n)$. However, it is but not boundedly invertible since it is not onto. If it were onto, then by the bounded inverse theorem the inverse Fourier transform would be continuous (bounded) as a map from C_0 to L^1 and this isn't true. For a counterexample, consider the function $f(x) = \frac{\sin x}{x} e^{-r|x|}$ on \mathbb{R} , As $r \to 0$, the Fourier transform converges to the characteristic function of a set while the sup norm stays bounded. However, the L^1 -norm of the function goes to infinity which means that the inverse is unbounded.

We will also see later that the set $\{\tilde{\chi}_x\}_{x\in\mathbb{R}^n}$ exhausts all characters. Warm up: (*Mystery of the missing unit*) 1.47 Question. What if a Banach *-algebra does not have a unit?

Let \mathcal{A} be a Banach algebra and let $\tilde{\mathcal{A}} = \mathcal{A} \times \mathbb{C}$. Identify this Cartesian product as $\mathcal{A} \times \mathbb{C}$, $(a, \lambda) = (a, 0) + (0, \lambda)$ equipped with multiplication $(a, \lambda)(b, \mu) = (ab + \lambda b + \mu a, \lambda \mu)$, and norm $||(a, \lambda)|| = ||a|| + |\lambda|$. Then $\tilde{\mathcal{A}}$ is a Banach algebra with unit (0, 1) and \mathcal{A} embeds in $\tilde{\mathcal{A}}$, $\mathcal{A} \cong (\mathcal{A}, 0) \leq \tilde{\mathcal{A}}$ as a subalgebra.

Note that if \mathcal{A} is *-algebra also then $(a, \lambda)^* = (a^*, \overline{\lambda})$ defines an involution on \mathcal{A} . We confirm associativity:

$$((a,\lambda)(b,\mu))(c,\gamma) = (ab + \lambda b + \mu a,\lambda\mu)(c,\gamma)$$

= $(abc + \lambda bc + \mu ac + \gamma ab + \lambda\mu c + \gamma\lambda b + \gamma\mu a + \lambda\mu\gamma)$
= $(a,\lambda)(bc + \mu c + \gamma b,\gamma\mu)$
= $(a,\lambda)((b,\mu))(c,\gamma)).$

Also, for all $(\mathfrak{a}, \lambda) \in \hat{\mathcal{A}}$,

$$(0,1)(a,\lambda) = (a,\lambda) = (a,\lambda)(0,1).$$

We check sub-multiplicativity next, for all $(a, \lambda), (b, \mu) \in \mathcal{A}$,

$$\begin{split} \|(a,\lambda)(b,\mu)\| &= \|(ab + \lambda b + \mu a,\lambda \mu)\| \\ &= \|ab + \lambda b + \mu a\| + |\lambda\mu|| \\ &\leq \|ab\| + |\lambda|\|b\| + |\mu\|\|a\| + |\lambda\mu| \\ &\leq \|a\|\|b\| + |\lambda\|\|b\| + |\mu\|\|a\| + |\lambda\mu| \\ &\leq \|a\|(\|b\| + |\mu|) + |\lambda(\|b\| + |\mu|) \\ &\leq (\|a\| + |\lambda|)(\|b\| + |\mu|) \\ &\leq \|(a,\lambda)\|\|(b,\mu)\|. \end{split}$$

Finally, we check completeness: let (a_n, λ_n) be a Cauchy sequence in \mathcal{A} , then there exists $N \in \mathbb{N}$ such that $||(a_n, \lambda_n) - (a_m, \lambda_m|| \to 0$ for all n, m > N. Using the norm defined, we get that the sequences $||a_n - a_m|| \to 0$ and $|\lambda_n - \lambda_m| \to 0$ for all n, m > N giving us Cauchy sequences $(a_n) \subset \mathcal{A}$ and $(\lambda_n) \subset \mathbb{C}$. By the completeness of \mathcal{A} and \mathbb{C} , we have $a \in \mathcal{A}$ and $\lambda \in \mathbb{C}$ such that $(a_n) \to a$ and $(\lambda_n) \to \lambda$. Again, using the norm defined, we have that $||a_n - a|| + |\lambda_n - \lambda| \to 0$ and thus $(a_n, \lambda_n) \to (a, \lambda)$ in $\tilde{\mathcal{A}}$. Using these properties we can proceed with Banach algebras even without a unit.

However, let us consider the case when \mathcal{A} has a unit, $1_{\mathcal{A}}$, and we embed it into \mathcal{A} . Due to uniqueness of the unit, (0,1) is the only unit in $\tilde{\mathcal{A}}$. Consider the element $(1_{\mathcal{A}}, 0)$ in $\tilde{\mathcal{A}}$, for any $(\alpha, \lambda) \in \tilde{\mathcal{A}}$,

$$(1_{\mathcal{A}}, 0)(a, \lambda) = (a + \lambda, 0)$$

and so we see that multuplication by $(1_A, 0)$ gives us a projection onto A. **The missing unit:** If A has a unit, we take $\tilde{A} = A$; if not we take \tilde{A} as above.

1.48 Definition (Spectrum). For a Banach algebra A, $a \in A$ we call

$$\sigma(\mathfrak{a}) = \{\lambda \in \mathbb{C} : \mathfrak{a} - \lambda 1 \notin G(\tilde{\mathcal{A}})\}$$

the spectrum of a and $\rho(a) = \mathbb{C} \smallsetminus (\sigma(a))$ the resolvent of a.

1.49 Definition (Spectral radius). The number $r(a) = \inf \{r > 0 : \sigma(a) \subset B_r(0)\}$ is called the spectral radius of a.

Note: If \mathcal{A} does not have a unit and we adjoin 1 to it, then ||1|| = 1. We want to achieve this if \mathcal{A} has a unit, if necessary by moving to an equivalent norm.

1.50 Theorem. Let \mathcal{A} be a Banach algebra with unit 1, then there exists a norm $\|\cdot\|_0$ that is equivalent to $\|\cdot\|$ (the norm on \mathcal{A}) and $\|1\|_0 = 1$, and for $a, b \in \mathcal{A}$, $\|ab\|_0 \le \|a\|_0 \|b\|_0$.

Proof. Consider for $a \in A$, the map $L_a : A \to A$, $x \mapsto ax$ and let

$$\|a\|_{0} \coloneqq \|L_{\mathfrak{a}}\| = \sup_{\|x\| \leq 1} ax \leq \|a\|.$$

The map

$$L: \mathcal{A} \to \mathbb{B}(\mathcal{A})$$
$$a \mapsto L_a$$

is linear: $\forall x, L(a+b)(x) = L_{a+b}(x) = (a+b)(x) = ax + bx = L_ax + L_bx \implies L(a+b) = L_a + L_b$. Also, it is one-one: since $L_a.1 = a$, if $L_a = L_b$ then $\forall x, ax = bx$ and for x = 1 we get a = b. Thus the norm $\|\cdot\|_0$ norm given by $\|a\|_0 := \|L_a\|$ is a well-defined norm on \mathcal{A} . Also,

$$\|1\|_0 = \|1\| = \|id_{\mathcal{A}}\| = \sup_{\|x\| \le 1} x = 1$$

and note that for all x, $L_{ab}(x) = (ab)x = a(bx) = L_aL_b(x)$ hence $L_{ab} = L_aL_b$. Thus

$$\begin{split} \|ab\|_{0} &= \|L_{ab}\| \\ &= \|L_{a}L_{b}\| \\ &\leq \|L_{a}\|\|L_{b}\| \end{split}$$

since the norm on $||L_a||$ is the operator norm from $\mathbb{B}(\mathcal{A})$ that is sub-multiplicative. Hence $||ab||_0 \leq ||a||_0 ||b||_0$. Next class, we show the equivalence of these norms.