Lecture Notes from October 18, 2022

taken by Tanvi Telang

Last time A Banach $*$-algebra and its relation to the Fourier transform. Recall for $f \in L^{1}\left(\mathbb{R}^{n}\right)$,

$$
\tilde{x}_{x}(f)=\int_{\mathbb{R}^{n}} f(y) e^{i x . y} d \lambda(y)
$$

defines a character. These characters are homomorphisms from the Banach $*$-algebra L^{1} to \mathbb{C}. We check that it is a homomorphism:

$$
\begin{aligned}
\tilde{\chi}_{x}(f * g) & =\int_{\mathbb{R}^{n}} \int_{\mathbb{R}^{n}} f(y) g(z-y) d \lambda(y) e^{i x \cdot z} d \lambda(z) \\
& =\int_{\mathbb{R}^{n}} \int_{\mathbb{R}^{n}} f(y) g(z-y) e^{i x \cdot z} d \lambda(y) d \lambda(z) \\
\text { (Fubini's gives) } & =\int_{\mathbb{R}^{n}} f(y) e^{i x \cdot y} \int_{\mathbb{R}^{n}} g(z) e^{i x \cdot z} d \lambda(z) d \lambda(y) \\
& =\int_{\mathbb{R}^{n}} f(y) e^{i x \cdot y} \tilde{\chi}_{x}(g) d \lambda(y)
\end{aligned}
$$

Thus, each $x \in \mathbb{R}^{n}$ defines a character $\tilde{\chi}_{x}$ on $L^{1}\left(\mathbb{R}^{n}\right)$. This can be used to map $f \in L^{1}\left(\mathbb{R}^{n}\right)$ to $\hat{f}: \mathbb{R}^{n} \rightarrow \mathbb{C} ; \hat{f}(x)=\tilde{\chi}_{x}(f)=\int_{\mathbb{R}^{n}} f(y) e^{i x \cdot y} d \lambda(y)$. The properties of $\tilde{\chi}_{x}\left(x \in \mathbb{R}^{n}\right)$ can be summarized as

$$
\hat{\mathrm{f}^{*}}=\hat{\mathrm{f}}^{*}=\hat{\mathrm{f}}, \quad(\mathrm{f} \hat{*} \mathrm{~g})=\hat{\mathrm{f}} \hat{\mathrm{~g}} .
$$

Moreover, $\hat{f} \in C_{0}\left(\mathbb{R}^{n}\right)$. Define

$$
\begin{aligned}
F: L^{1}\left(\mathbb{R}^{n}\right) & \rightarrow C_{0}\left(\mathbb{R}^{n}\right) \\
f & \mapsto \hat{f}
\end{aligned}
$$

F is the Fourier transform on \mathbb{R}^{n}. It is invertible on rangeF so $L^{1}\left(\mathbb{R}^{n}\right)$ is isomorphic to a subalgebra of $C_{0}\left(\mathbb{R}^{n}\right)$. However, it is but not boundedly invertible since it is not onto. If it were onto, then by the bounded inverse theorem the inverse Fourier transform would be continuous (bounded) as a map from C_{0} to L^{1} and this isn't true. For a counterexample, consider the function $f(x)=\frac{\sin x}{x} e^{-r|x|}$ on \mathbb{R}, As $r \rightarrow 0$, the Fourier transform converges to the characteristic function of a set while the sup norm stays bounded. However, the L^{1}-norm of the function goes to infinity which means that the inverse is unbounded.

We will also see later that the set $\left\{\tilde{\chi}_{x}\right\}_{x \in \mathbb{R}^{n}}$ exhausts all characters.
Warm up: (Mystery of the missing unit)

1.47 Question. What if a Banach *-algebra does not have a unit?

Let \mathcal{A} be a Banach algebra and let $\tilde{\mathcal{A}}=\mathcal{A} \times \mathbb{C}$. Identify this Cartesian product as $\mathcal{A} \times \mathbb{C}$, $(a, \lambda)=(a, 0)+(0, \lambda)$ equipped with multiplication $(a, \lambda)(b, \mu)=(a b+\lambda b+\mu a, \lambda \mu)$, and norm $\|(a, \lambda)\|=\|a\|+|\lambda|$. Then $\tilde{\mathcal{A}}$ is a Banach algebra with unit $(0,1)$ and \mathcal{A} embeds in $\tilde{\mathcal{A}}$, $\mathcal{A} \cong(\mathcal{A}, 0) \leq \tilde{\mathcal{A}}$ as a subalgebra.

Note that if \mathcal{A} is $*$-algebra also then $(a, \lambda)^{*}=\left(a^{*}, \bar{\lambda}\right)$ defines an involution on \mathcal{A}.
We confirm associativity:

$$
\begin{aligned}
((a, \lambda)(b, \mu))(c, \gamma) & =(a b+\lambda b+\mu a, \lambda \mu)(c, \gamma) \\
& =(a b c+\lambda b c+\mu a c+\gamma a b+\lambda \mu c+\gamma \lambda b+\gamma \mu a+\lambda \mu \gamma) \\
& =(a, \lambda)(b c+\mu c+\gamma b, \gamma \mu) \\
& =(a, \lambda)((b, \mu))(c, \gamma)) .
\end{aligned}
$$

Also, for all $(a, \lambda) \in \tilde{\mathcal{A}}$,

$$
(0,1)(a, \lambda)=(a, \lambda)=(a, \lambda)(0,1)
$$

We check sub-multiplicativity next, for all $(a, \lambda),(b, \mu) \in \tilde{\mathcal{A}}$,

$$
\begin{aligned}
\|(a, \lambda)(b, \mu)\| & =\|(a b+\lambda b+\mu a, \lambda \mu)\| \\
& =\|a b+\lambda b+\mu a\|+\mid \lambda \mu) \mid \\
& \leq\|a b\|+|\lambda|\|b\|+|\mu|\|a\|+|\lambda \mu| \\
& \leq\|a\|\|b\|+|\lambda|\|b\|+|\mu|\|a\|+|\lambda \mu| \\
& \leq\|a\|(\|b\|+|\mu|)+\mid \lambda(\|b\|+|\mu|) \\
& \leq(\|a\|+|\lambda|)(\|b\|+|\mu|) \\
& \leq\|(a, \lambda)\|\|(b, \mu)\| .
\end{aligned}
$$

Finally, we check completeness: let $\left(a_{n}, \lambda_{n}\right)$ be a Cauchy sequence in $\tilde{\mathcal{A}}$, then there existas $N \in \mathbb{N}$ such that $\|\left(a_{n}, \lambda_{n}\right)-\left(a_{m}, \lambda_{m} \| \rightarrow 0\right.$ for all $n, m>N$. Using the norm defined, we get that the sequences $\left\|a_{n}-a_{m}\right\| \rightarrow 0$ and $\left|\lambda_{n}-\lambda_{m}\right| \rightarrow 0$ for all $n, m>N$ giving us Cauchy sequences $\left(a_{n}\right) \subset \mathcal{A}$ and $\left(\lambda_{n}\right) \subset \mathbb{C}$. By the completeness of \mathcal{A} and \mathbb{C}, we have $a \in \mathcal{A}$ and $\lambda \in \mathbb{C}$ such that $\left(a_{n}\right) \rightarrow a$ and $\left(\lambda_{n}\right) \rightarrow \lambda$. Again, using the norm defined, we have that $\left\|a_{n}-a\right\|+\left|\lambda_{n}-\lambda\right| \rightarrow 0$ and thus $\left(a_{n}, \lambda_{n}\right) \rightarrow(a, \lambda)$ in $\tilde{\mathcal{A}}$. Using these properties we can proceed with Banach algebras even without a unit.

However, let us consider the case when \mathcal{A} has a unit, $1_{\mathcal{A}}$, and we embed it into $\tilde{\mathcal{A}}$. Due to uniqueness of the unit, $(0,1)$ is the only unit in $\tilde{\mathcal{A}}$. Consider the element $\left(1_{\mathcal{A}}, 0\right)$ in $\tilde{\mathcal{A}}$, for any $(a, \lambda) \in \tilde{\mathcal{A}}$,

$$
\left(1_{\mathcal{A}}, 0\right)(a, \lambda)=(a+\lambda, 0)
$$

and so we see that multuplication by $\left(1_{\mathcal{A}}, 0\right)$ gives us a projection onto \mathcal{A}.
The missing unit: If \mathcal{A} has a unit, we take $\tilde{\mathcal{A}}=\mathcal{A}$; if not we take $\tilde{\mathcal{A}}$ as above.
1.48 Definition (Spectrum). For a Banach algebra $\mathcal{A}, a \in \mathcal{A}$ we call

$$
\sigma(a)=\{\lambda \in \mathbb{C}: a-\lambda 1 \notin G(\tilde{\mathcal{A}})\}
$$

the spectrum of a and $\rho(a)=\mathbb{C} \backslash(\sigma(a))$ the resolvent of a.
1.49 Definition (Spectral radius). The number $r(a)=\inf \left\{r>0: \sigma(a) \subset B_{r}(0)\right\}$ is called the spectral radius of a.

Note: If \mathcal{A} does not have a unit and we adjoin 1 to it, then $\|1\|=1$. We want to achieve this if \mathcal{A} has a unit, if necessary by moving to an equivalent norm.
1.50 Theorem. Let \mathcal{A} be a Banach algebra with unit 1, then there exists a norm $\|\cdot\|_{0}$ that is equivalent to $\|\cdot\|$ (the norm on \mathcal{A}) and $\|1\|_{0}=1$, and for $\mathrm{a}, \mathrm{b} \in \mathcal{A},\|\mathrm{ab}\|_{0} \leq\|\mathrm{a}\|_{0}\|\mathrm{~b}\|_{0}$.

Proof. Consider for $\mathrm{a} \in \mathcal{A}$, the map $\mathrm{L}_{\mathrm{a}}: \mathcal{A} \rightarrow \mathcal{A}, \mathrm{x} \mapsto \mathrm{ax}$ and let

$$
\|a\|_{0}:=\left\|L_{a}\right\|=\sup _{\|x\| \leq 1} a x \leq\|a\| .
$$

The map

$$
\begin{aligned}
\mathrm{L}: \mathcal{A} & \rightarrow \mathbb{B}(\mathcal{A}) \\
& \mathfrak{a}
\end{aligned}
$$

is linear: $\forall x, L(a+b)(x)=L_{a+b}(x)=(a+b)(x)=a x+b x=L_{a} x+L_{b} x \Longrightarrow L(a+b)=$ $\mathrm{L}_{\mathrm{a}}+\mathrm{L}_{\mathrm{b}}$. Also, it is one-one: since $\mathrm{L}_{\mathrm{a}} .1=\mathrm{a}$, if $\mathrm{L}_{\mathrm{a}}=\mathrm{L}_{\mathrm{b}}$ then $\forall x$, $\mathrm{ax}=\mathrm{bx}$ and for $x=1$ we get $\mathrm{a}=\mathrm{b}$. Thus the norm $\|\cdot\|_{0}$ norm given by $\|\mathrm{a}\|_{0}:=\left\|\mathrm{L}_{\mathrm{a}}\right\|$ is a well-defined norm on \mathcal{A}. Also,

$$
\|1\|_{0}=\|1\|=\left\|i d_{\mathcal{A}}\right\|=\sup _{\|x\| \leq 1} x=1
$$

and note that for all $x, L_{a b}(x)=(a b) x=a(b x)=L_{a} L_{b}(x)$ hence $L_{a b}=L_{a} L_{b}$. Thus

$$
\begin{aligned}
\|\mathrm{ab}\|_{0} & =\left\|\mathrm{L}_{\mathrm{ab}}\right\| \\
& =\left\|\mathrm{L}_{\mathrm{a}} \mathrm{~L}_{\mathrm{b}}\right\| \\
& \leq\left\|\mathrm{L}_{a}\right\|\left\|\mathrm{L}_{b}\right\|
\end{aligned}
$$

since the norm on $\left\|\mathrm{L}_{a}\right\|$ is the operator norm from $\mathbb{B}(\mathcal{A})$ that is sub-multiplicative. Hence $\|a b\|_{0} \leq\|a\|_{0}\|b\|_{0}$. Next class, we show the equivalence of these norms.

