MATH 7320 Lecture Notes

Note-taker: Kumari Teena

October 20, 2022

Last time:

- Banach Algebra with and without unit.
- We had proved most of the following.

Theorem 1. Let A be a Banach algebra with unit 1, then there exist a norm $\|.\|_0$ that is equivalent to on A and $\|1\|_0 = 1$, and for $a, b \in A$

 $\|ab\|_0 \le \|a\|_0 \|b\|_0$

Proof: Consider $L_a: A \longrightarrow A$ defined by $x \longrightarrow ax$.

$$||a||_0 = ||L_0|| = \sup_{||x|| \le 1} ||ax|| \le ||a||$$
.

Because of $L_a 1 = a$, the linear map $L : A \longrightarrow \mathcal{B}(A), a \longrightarrow L_a$ is one-one. First we prove the map L is linear as follows Let $\alpha, \beta \in \mathbb{C}$ and $a, b \in A$ then

$$L(\alpha a + \beta b) = L_{(\alpha a + \beta b)} . \tag{0.1}$$

Then for all $x \in A$, we have

$$L_{(\alpha a+\beta b)}(X) = (\alpha a+\beta b)x$$
$$= \alpha ax+\beta bx = \alpha(ax)+\beta(bx)$$
$$= (\alpha L_a+\beta L_b)x$$

Thus, by equation (0.1)

$$L(\alpha a + \beta b) = L_{(\alpha a + \beta b)} = \alpha L_a + \beta L_b$$

This implies that L is linear. Now by norm properties of $\|.\|$, we see that $\|.\|_0$ is a norm on A.

$$||a||_0 = 0 \quad \Longleftrightarrow \quad ||L_a|| = 0 \quad \Longleftrightarrow \quad L_a = 0 \quad \Longleftrightarrow \quad a = 0 \; ,$$

as L is one-to-one. Also, $\|\alpha a\|_0 = \|L_{\alpha a}\| = \|\alpha L_a\| = |\alpha| \|L_a\| = |\alpha| \|a\|_0$ for all $\alpha \in \mathbb{C}$ and by linearity of L, we have

$$||a+b||_0 = ||L_{a+b}|| = ||L_a+L_b|| \le ||L_a|| + ||L_b|| = ||a||_0 + ||b||_0 ,$$

$$\implies ||a+b||_0 \le ||a||_0 + ||b||_0$$

So, $||a||_0 = ||L_a||$ is a norm on *A*.

Furthermore, $||1||_0 = \sup_{||x|| \le 1} ||1x|| = 1$, and

$$||ab||_0 = ||L_a|| = ||L_aL_b|| \le ||L_a|| ||L_b|| = ||a||_0 ||b||_0$$

Now it is left to show that $\|.\|$ and $\|.\|_0$ are equivalent. To see this

$$||a|| = ||a_1|| = ||L_a 1|| \le ||L_a|| ||1|| = ||a||_0 ||1|| \le ||a|| ||1||$$
.

So,

$$\frac{1}{\|1\|} \|a\| \le \|a\|_0 \le \|a\| \ .$$

Here, the equivalence of norms implies that the algebra with the new norms is also a Banach algebra. From now on, we assume that if 1 is a unit in a Banach algebra, then we can assume ||1|| = 1. Next we study C^* -algebras, where $||a|| = ||L_a||$ for each $a \in A$.

1 Properties of the embedding $A \longrightarrow \tilde{A}$ when A is a C^* -algebra

Theorem 2. Let A be a C^* - algebra, then

1. If $L_a : x \longrightarrow ax$ as above, then $||a|| = ||L_a||$. In particular, if 1 is a unit, then ||1|| = 1.

2. If A does not have a unit, then \tilde{A} becomes a C^* -algebra if we define

$$(a,\lambda)^* = (a^*,\overline{\lambda})$$

and we choose the norm $||(a, \lambda)|| = ||L_{(a,\lambda)}||$, where for $x \in A$,

$$1_{(a,\lambda)}x = ax + \lambda x \; .$$

Proof: 1. We have

$$||L_a|| = \sup_{||x|| \le 1} ||L_a x|| = \sup_{||x|| \le 1} ||ax|| \le ||a||.$$

On the other hand

$$||aa^*|| = ||a||^2 = ||a|| ||a^*||$$

So,

$$||L_a|| = \sup_{||x|| \le 1} ||L_a x|| \ge ||L_a \frac{a^*}{||a||}|| = ||a| \frac{a^*}{||a||}|| = ||a||.$$

We conclude, $||a|| = ||L_a||$. From 1 being unit $L_1 = id_A$,

$$||1|| = ||L_1|| = 1$$
.

2. $L: \tilde{A} \longrightarrow \mathcal{B}(A)$ be given by

$$L(a,\lambda) = L_{(a,\lambda)} \& L_{(a,\lambda)}x = ax + \lambda x$$
.

We show L is one-one. Let $L(a, \lambda) = 0$. If $\lambda = 0$, then $L_a = 0$ and so a = 0. If $\lambda \neq 0$, then by linearity

$$L_{(a,\lambda)}x = 0,$$

$$ax + \lambda x = 0$$

$$\implies \left(\frac{-1}{\lambda}\right)ax - x = 0$$

 $\implies \left(\frac{-1}{\lambda}\right)a \text{ is (left) unit. This contradicts our assumption that } A \text{ does not}$ have a unit. Thus, <math>L is one-one and $||(a, \lambda)|| = ||L_{(a,\lambda)}||$ is a norm on A. To check the norm property, we only need to show for $x \in \tilde{A}$,

$$||x||^2 \le ||x^*x|| ,$$

where the norm is defined by $||x|| = L_x$. If ||x|| = 0, then there is nothing to show. If 0 < r < ||x||, by definition of norm on \tilde{A} , there is $y \in A$, $||y|| \le$ 1, $||xy|| \ge r$. For $x \in \tilde{A}$ and $y \in A$, by the multiplication law $xy \in A$. Replacing x with xy gives,

$$||x^*x|| = ||y^*x^*xy||$$

= $||(xy)^*xy||$
= $||xy||^2 \ge r^2$.

So taking the supremum over r < ||x|| gives $||x^*x|| \ge ||x||^2$. We conclude with examples.

Example 3. Let X be a locally compact Hausdorff space that is not compact. Let A = C(X), then A does not have a unit (why?) and \tilde{A} can be thought of as continuous functions with a limit at infinity, with $(0, 1) \equiv 1$.

To justify this, we note $\tilde{A} \longrightarrow C_b(X)$, $(f, \lambda) = f + \lambda 1$ can be thought of as an isometry, where $C_b(X)$ has the supremum.

We want $(f, \lambda) = f + \lambda 1$. If we choose $||(f, \lambda)|| = ||f||_{\infty} + |\lambda|$, then $||f + \lambda 1||_{\infty} \le ||f||_{\infty} + |\lambda|$. But equality may not hold. If instead we let $||(f, \lambda)|| = ||L_{(f,\lambda)}||$, then Urysohn's Lemma shows

$$||L(f,\lambda)|| = ||f + \lambda 1||_{\infty}.$$

Hence, we can think of $C_0(X)$ as functions that have a limit at ∞ , equipped with Sup. norm .

2 Examples of C^* -algebra and spectra of elements

Example 4. Let X be a compact Hausdorff space, A = C(X), $f \in A$. What is $\sigma(f)$?

We recall $g \in G(A)$ means there exists $h \in C(X)$ and gh = 1. So $g(x) \neq 0$ for each $x \in X$.

Conversely, if $g(x) \neq 0$ for each $x \in X$, then $h(x) = \frac{1}{g(x)}$ is in C(X).

Next, to see what the spectrum is $f - \lambda 1$ is invertible if and only if $f(x) \neq \lambda$ at any $x \in X$. Consequently, $\sigma(f) = f(X)$.

Example 5. Let X be a locally compact Hausdorff space, $A = C_0(X)$, $f \in A$. What is $\sigma(f)$? In order to invert a function in a bounded manner, assuming $f \in C(X)$ and f has limit at ∞ , then $f(X) \neq 0$ for each x, and $\lim_{x \to \infty} f(x) \neq 0$. In notation of \tilde{A} , we need to embed A in \tilde{A} by $f \longrightarrow (f, \lambda)$, where $(f, \lambda) = f + \lambda 1$ and f(x) has a limit at ∞ . So, (f, λ) is invertible if and only if $f(x) \neq 0$, for each $x \in X$ and $\lambda \neq 0$. Hence, $\sigma(f) = f(X) \cup \{0\}$.

Example 6. Let $A \subset \mathcal{B}(\mathbb{C}^n)$ be an algebra of $n \times n$ matrices containing 1. Let $x \in A$ is invertible in A if and only if there is $y \in A$ such that yx = xy = 1.

We show that if there is $y \in \mathcal{B}(\mathbb{C}^n)$ with xy = yx = 1, then $y \in A$. To see this, note $L_x : A \longrightarrow A$. So, if x is invertible in $\mathcal{B}(\mathbb{C}^n)$, then $y \longrightarrow xy$ is one-to-one. Since, A is finite dimensional, L_x is also onto. So, there is a yAsuch that

$$L_x(y) = xy = 1 \; .$$

Hence, $y = x^{-1} \in A$. Thus ,

$$G(A) = A \cap G(\mathcal{B}(\mathbb{C}^n))$$
$$= \{a \in A : det(a) \neq 0\}$$

From this, we deduce for $a \in A$

$$\sigma(a) = \{\lambda \in \mathbb{C} : a - \lambda 1 \notin G(A)\}.$$

Hence, the spectrum of a consists of the eigenvalues of a. It is interesting to note, $\sigma(a)$ does not depend on the choice of $A \subset \mathcal{B}(\mathbb{C}^n)$.