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Last time:

• Banach Algebra with and without unit.

• We had proved most of the following.

Theorem 1. Let A be a Banach algebra with unit 1, then there exist a norm

∥.∥0 that is equivalent to on A and ∥1∥0 = 1, and for a, b ∈ A

∥ab∥0 ≤ ∥a∥0∥b∥0

.

Proof: Consider La : A −→ A defined by x −→ ax.

∥a∥0 = ∥L0∥ = sup
∥x∥≤1

∥ax∥ ≤ ∥a∥ .

Because of La1 = a, the linear map L : A −→ B(A), a −→ La is one-one.

First we prove the map L is linear as follows

Let α, β ∈ C and a, b ∈ A then

L(αa+ βb) = L(αa+βb) . (0.1)

Then for all x ∈ A, we have

L(αa+βb)(X) = (αa+ βb)x

= αax+ βbx = α(ax) + β(bx)

= (αLa + βLb)x

1
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Thus, by equation (0.1)

L(αa+ βb) = L(αa+βb) = αLa + βLb

This implies that L is linear. Now by norm properties of ∥.∥, we see that

∥.∥0 is a norm on A.

∥a∥0 = 0 ⇐⇒ ∥La∥ = 0 ⇐⇒ La = 0 ⇐⇒ a = 0 ,

as L is one-to-one. Also, ∥αa∥0 = ∥Lαa∥ = ∥αLa∥ = |α|∥La∥ = |α|∥a∥0 for

all α ∈ C and by linearity of L, we have

∥a+ b∥0 = ∥La+b∥ = ∥La + Lb∥ ≤ ∥La∥+ ∥Lb∥ = ∥a∥0 + ∥b∥0 ,

=⇒ ∥a+ b∥0 ≤ ∥a∥0 + ∥b∥0

So, ∥a∥0 = ∥La∥ is a norm on A.

Furthermore, ∥1∥0 = sup∥x∥≤1 ∥1x∥ = 1, and

∥ab∥0 = ∥La∥ = ∥LaLb∥ ≤ ∥La∥∥Lb∥ = ∥a∥0∥b∥0 .

Now it is left to show that ∥.∥ and ∥.∥0 are equivalent. To see this

∥a∥ = ∥a1∥ = ∥La1∥ ≤ ∥La∥∥1∥ = ∥a∥0∥1∥ ≤ ∥a∥∥1∥ .

So,
1

∥1∥
∥a∥ ≤ ∥a∥0 ≤ ∥a∥ .

Here , the equivalence of norms implies that the algebra with the new norms

is also a Banach algebra. From now on, we assume that if 1 is a unit in a

Banach algebra, then we can assume ∥1∥ = 1. Next we study C∗−algebras,

where ∥a∥ = ∥La∥ for each a ∈ A.

1 Properties of the embedding A −→ Ã when

A is a C∗−algebra

Theorem 2. Let A be a C∗− algebra, then

1. If La : x −→ ax as above, then ∥a∥ = ∥La∥. In particular, if 1 is a

unit, then ∥1∥ = 1.
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2. If A does not have a unit, then Ã becomes a C∗−algebra if we define

(a, λ)∗ = (a∗, λ)

and we choose the norm ∥(a, λ)∥ = ∥L(a,λ)∥, where for x ∈ A,

1(a,λ)x = ax+ λx .

Proof: 1. We have

∥La∥ = sup
∥x∥≤1

∥Lax∥ = sup
∥x∥≤1

∥ax∥ ≤ ∥a∥ .

On the other hand

∥aa∗∥ = ∥a∥2 = ∥a∥∥a∗∥

So,

∥La∥ = sup
∥x∥≤1

∥Lax∥ ≥ ∥La
a∗

∥a∥
∥ = ∥a a∗

∥a∥
∥ = ∥a∥ .

We conclude, ∥a∥ = ∥La∥. From 1 being unit L1 = idA,

∥1∥ = ∥L1∥ = 1 .

2. L : Ã −→ B(A) be given by

L(a, λ) = L(a,λ) & L(a,λ)x = ax+ λx .

We show L is one-one. Let L(a, λ) = 0. If λ = 0, then La = 0 and so a = 0.

If λ ̸= 0, then by linearity

L(a,λ)x = 0,

ax+ λx = 0

=⇒
(
−1

λ

)
ax− x = 0

=⇒
(−1

λ

)
a is (left) unit. This contradicts our assumption that A does not

have a unit. Thus, L is one-one and ∥(a, λ)∥ = ∥L(a,λ)∥ is a norm on A.

To check the norm property, we only need to show for x ∈ Ã ,

∥x∥2 ≤ ∥x∗x∥ ,

where the norm is defined by ∥x∥ = Lx. If ∥x∥ = 0, then there is nothing to

show. If 0 < r < ∥x∥, by definition of norm on Ã, there is y ∈ A , ∥y∥ ≤
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1 , ∥xy∥ ≥ r. For x ∈ Ã and y ∈ A, by the multiplication law xy ∈ A.

Replacing x with xy gives,

∥x∗x∥ = ∥y∗x∗xy∥

= ∥(xy)∗xy∥

= ∥xy∥2 ≥ r2 .

So taking the supremum over r < ∥x∥ gives ∥x∗x∥ ≥ ∥x∥2. We conclude

with examples.

Example 3. Let X be a locally compact Hausdorff space that is not compact.

Let A = C(X), then A does not have a unit (why?) and Ã can be thought of

as continuous functions with a limit at infinity, with (0, 1) ≡ 1.

To justify this, we note Ã −→ Cb(X), (f, λ) = f + λ1 can be thought of

as an isometry, where Cb(X) has the supremum.

We want (f, λ) = f + λ1. If we choose ∥(f, λ)∥ = ∥f∥∞ + |λ| , then ∥f +

λ1∥∞ ≤ ∥f∥∞ + |λ|. But equality may not hold. If instead we let ∥(f, λ)∥ =

∥L(f,λ)∥, then Urysohn’s Lemma shows

∥L(f, λ)∥ = ∥f + λ1∥∞ .

Hence, we can think of ˜C0(X) as functions that have a limit at ∞, equipped

with Sup. norm .

2 Examples of C∗−algebra and spectra of

elements

Example 4. Let X be a compact Hausdorff space, A = C(X), f ∈ A. What

is σ(f) ?

We recall g ∈ G(A) means there exists h ∈ C(X) and gh = 1. So g(x) ̸= 0

for each x ∈ X.

Conversely, if g(x) ̸= 0 for each x ∈ X, then h(x) = 1
g(x)

is in C(X).

Next, to see what the spectrum is f −λ1 is invertible if and only if f(x) ̸= λ

at any x ∈ X. Consequently , σ(f) = f(X).

Example 5. Let X be a locally compact Hausdorff space, A = C0(X), f ∈ A.

What is σ(f)?
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In order to invert a function in a bounded manner, assuming f ∈ C(X)

and f has limit at ∞, then f(X) ̸= 0 for each x, and limx−→∞ f(x) ̸= 0.

In notation of Ã, we need to embed A in Ã by f −→ (f, λ), where (f, λ) =

f + λ1 and f(x) has a limit at ∞. So, (f, λ) is invertible if and only if

f(x) ̸= 0, for each x ∈ X and λ ̸= 0. Hence, σ(f) = f(X) ∪ {0}.

Example 6. Let A ⊂ B(Cn) be an algebra of n×n matrices containing 1. Let

x ∈ A is invertible in A if and only if there is y ∈ A such that yx = xy = 1.

We show that if there is y ∈ B(Cn) with xy = yx = 1, then y ∈ A. To

see this, note Lx : A −→ A. So, if x is invertible in B(Cn), then y −→ xy is

one-to-one. Since, A is finite dimensional, Lx is also onto. So, there is a yA

such that

Lx(y) = xy = 1 .

Hence, y = x−1 ∈ A. Thus ,

G(A) = A ∩G(B(Cn))

= {a ∈ A : det(a) ̸= 0}

From this, we deduce for a ∈ A

σ(a) = {λ ∈ C : a− λ1 /∈ G(A)} .

Hence, the spectrum of a consists of the eigenvalues of a. It is interesting to

note, σ(a) does not depend on the choice of A ⊂ B(Cn).
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