MATH 7320 Lecture Notes

Note-taker: Kumari Teena

October 20, 2022

Last time:

- Banach Algebra with and without unit.
- We had proved most of the following.

Theorem 1. Let A be a Banach algebra with unit 1, then there exist a norm $\|\cdot\|_{0}$ that is equivalent to on A and $\|1\|_{0}=1$, and for $a, b \in A$

$$
\|a b\|_{0} \leq\|a\|_{0}\|b\|_{0}
$$

Proof: Consider $L_{a}: A \longrightarrow A$ defined by $x \longrightarrow a x$.

$$
\|a\|_{0}=\left\|L_{0}\right\|=\sup _{\|x\| \leq 1}\|a x\| \leq\|a\| .
$$

Because of $L_{a} 1=a$, the linear map $L: A \longrightarrow \mathcal{B}(A), a \longrightarrow L_{a}$ is one-one.
First we prove the map L is linear as follows
Let $\alpha, \beta \in \mathbb{C}$ and $a, b \in A$ then

$$
\begin{equation*}
L(\alpha a+\beta b)=L_{(\alpha a+\beta b)} . \tag{0.1}
\end{equation*}
$$

Then for all $x \in A$, we have

$$
\begin{aligned}
L_{(\alpha a+\beta b)}(X) & =(\alpha a+\beta b) x \\
& =\alpha a x+\beta b x=\alpha(a x)+\beta(b x) \\
& =\left(\alpha L_{a}+\beta L_{b}\right) x
\end{aligned}
$$

Thus, by equation (0.1)

$$
L(\alpha a+\beta b)=L_{(\alpha a+\beta b)}=\alpha L_{a}+\beta L_{b}
$$

This implies that L is linear. Now by norm properties of $\|$.$\| , we see that$ $\|\cdot\|_{0}$ is a norm on A.

$$
\|a\|_{0}=0 \quad \Longleftrightarrow \quad\left\|L_{a}\right\|=0 \quad \Longleftrightarrow \quad L_{a}=0 \quad \Longleftrightarrow \quad a=0,
$$

as L is one-to-one. Also, $\|\alpha a\|_{0}=\left\|L_{\alpha a}\right\|=\left\|\alpha L_{a}\right\|=|\alpha|\left\|L_{a}\right\|=|\alpha|\|a\|_{0}$ for all $\alpha \in \mathbb{C}$ and by linearity of L, we have

$$
\begin{gathered}
\|a+b\|_{0}=\left\|L_{a+b}\right\|=\left\|L_{a}+L_{b}\right\| \leq\left\|L_{a}\right\|+\left\|L_{b}\right\|=\|a\|_{0}+\|b\|_{0}, \\
\Longrightarrow\|a+b\|_{0} \leq\|a\|_{0}+\|b\|_{0}
\end{gathered}
$$

So, $\|a\|_{0}=\left\|L_{a}\right\|$ is a norm on A.
Furthermore, $\|1\|_{0}=\sup _{\|x\| \leq 1}\|1 x\|=1$, and

$$
\|a b\|_{0}=\left\|L_{a}\right\|=\left\|L_{a} L_{b}\right\| \leq\left\|L_{a}\right\|\left\|L_{b}\right\|=\|a\|_{0}\|b\|_{0} .
$$

Now it is left to show that $\|$.$\| and \|.\|_{0}$ are equivalent. To see this

$$
\|a\|=\left\|a_{1}\right\|=\left\|L_{a} 1\right\| \leq\left\|L_{a}\right\|\|1\|=\|a\|_{0}\|1\| \leq\|a\|\|1\| .
$$

So,

$$
\frac{1}{\|1\|}\|a\| \leq\|a\|_{0} \leq\|a\|
$$

Here, the equivalence of norms implies that the algebra with the new norms is also a Banach algebra. From now on, we assume that if 1 is a unit in a Banach algebra, then we can assume $\|1\|=1$. Next we study C^{*}-algebras, where $\|a\|=\left\|L_{a}\right\|$ for each $a \in A$.

1 Properties of the embedding $A \longrightarrow \tilde{A}$ when A is a C^{*}-algebra

Theorem 2. Let A be a C^{*} - algebra, then

1. If $L_{a}: x \longrightarrow a x$ as above, then $\|a\|=\left\|L_{a}\right\|$. In particular, if 1 is a unit, then $\|1\|=1$.
2. If A does not have a unit, then \tilde{A} becomes a C^{*}-algebra if we define

$$
(a, \lambda)^{*}=\left(a^{*}, \bar{\lambda}\right)
$$

and we choose the norm $\|(a, \lambda)\|=\left\|L_{(a, \lambda)}\right\|$, where for $x \in A$,

$$
1_{(a, \lambda)} x=a x+\lambda x
$$

Proof: 1. We have

$$
\left\|L_{a}\right\|=\sup _{\|x\| \leq 1}\left\|L_{a} x\right\|=\sup _{\|x\| \leq 1}\|a x\| \leq\|a\|
$$

On the other hand

$$
\left\|a a^{*}\right\|=\|a\|^{2}=\|a\|\left\|a^{*}\right\|
$$

So,

$$
\left\|L_{a}\right\|=\sup _{\|x\| \leq 1}\left\|L_{a} x\right\| \geq\left\|L_{a} \frac{a^{*}}{\|a\|}\right\|=\left\|a \frac{a^{*}}{\|a\|}\right\|=\|a\| .
$$

We conclude, $\|a\|=\left\|L_{a}\right\|$. From 1 being unit $L_{1}=i d_{A}$,

$$
\|1\|=\left\|L_{1}\right\|=1
$$

2. $L: \tilde{A} \longrightarrow \mathcal{B}(A)$ be given by

$$
L(a, \lambda)=L_{(a, \lambda)} \quad \& \quad L_{(a, \lambda)} x=a x+\lambda x
$$

We show L is one-one. Let $L(a, \lambda)=0$. If $\lambda=0$, then $L_{a}=0$ and so $a=0$. If $\lambda \neq 0$, then by linearity

$$
\begin{aligned}
L_{(a, \lambda)} x & =0, \\
a x+\lambda x & =0 \\
\Longrightarrow \quad\left(\frac{-1}{\lambda}\right) a x-x & =0
\end{aligned}
$$

$\Longrightarrow \quad\left(\frac{-1}{\lambda}\right) a$ is (left) unit. This contradicts our assumption that A does not have a unit. Thus, L is one-one and $\|(a, \lambda)\|=\left\|L_{(a, \lambda)}\right\|$ is a norm on A. To check the norm property, we only need to show for $x \in \tilde{A}$,

$$
\|x\|^{2} \leq\left\|x^{*} x\right\|
$$

where the norm is defined by $\|x\|=L_{x}$. If $\|x\|=0$, then there is nothing to show. If $0<r<\|x\|$, by definition of norm on \tilde{A}, there is $y \in A,\|y\| \leq$
\qquad elements

1, $\|x y\| \geq r$. For $x \in \tilde{A}$ and $y \in A$, by the multiplication law $x y \in A$.
Replacing x with $x y$ gives,

$$
\begin{aligned}
\left\|x^{*} x\right\| & =\left\|y^{*} x^{*} x y\right\| \\
& =\left\|(x y)^{*} x y\right\| \\
& =\|x y\|^{2} \geq r^{2} .
\end{aligned}
$$

So taking the supremum over $r<\|x\|$ gives $\left\|x^{*} x\right\| \geq\|x\|^{2}$. We conclude with examples.

Example 3. Let X be a locally compact Hausdorff space that is not compact. Let $A=C(X)$, then A does not have a unit (why?) and \tilde{A} can be thought of as continuous functions with a limit at infinity, with $(0,1) \equiv 1$.

To justify this, we note $\tilde{A} \longrightarrow C_{b}(X),(f, \lambda)=f+\lambda 1$ can be thought of as an isometry, where $C_{b}(X)$ has the supremum.
We want $(f, \lambda)=f+\lambda 1$. If we choose $\|(f, \lambda)\|=\|f\|_{\infty}+|\lambda|$, then $\| f+$ $\lambda 1\left\|_{\infty} \leq\right\| f \|_{\infty}+|\lambda|$. But equality may not hold. If instead we let $\|(f, \lambda)\|=$ $\left\|L_{(f, \lambda)}\right\|$, then Urysohn's Lemma shows

$$
\|L(f, \lambda)\|=\|f+\lambda 1\|_{\infty}
$$

Hence, we can think of $C_{0} \tilde{(X)}$ as functions that have a limit at ∞, equipped with Sup. norm .

2 Examples of C^{*}-algebra and spectra of elements

Example 4. Let X be a compact Hausdorff space, $A=C(X), f \in A$. What is $\sigma(f)$?

We recall $g \in G(A)$ means there exists $h \in C(X)$ and $g h=1$. So $g(x) \neq 0$ for each $x \in X$.
Conversely, if $g(x) \neq 0$ for each $x \in X$, then $h(x)=\frac{1}{g(x)}$ is in $C(X)$.
Next, to see what the spectrum is $f-\lambda 1$ is invertible if and only if $f(x) \neq \lambda$ at any $x \in X$. Consequently, $\sigma(f)=f(X)$.

Example 5. Let X be a locally compact Hausdorff space, $A=C_{0}(X), f \in A$. What is $\sigma(f)$?

$$
\begin{aligned}
& \text { 2. Examples of } C^{*} \text {-algebra and spectra of } \\
& \text { elements }
\end{aligned}
$$

In order to invert a function in a bounded manner, assuming $f \in C(X)$ and f has limit at ∞, then $f(X) \neq 0$ for each x, and $\lim _{x \rightarrow \infty} f(x) \neq 0$.
In notation of \tilde{A}, we need to embed A in \tilde{A} by $f \longrightarrow(f, \lambda)$, where $(f, \lambda)=$ $f+\lambda 1$ and $f(x)$ has a limit at ∞. So, (f, λ) is invertible if and only if $f(x) \neq 0$, for each $x \in X$ and $\lambda \neq 0$. Hence, $\sigma(f)=f(X) \cup\{0\}$.

Example 6. Let $A \subset \mathcal{B}\left(\mathbb{C}^{n}\right)$ be an algebra of $n \times n$ matrices containing 1. Let $x \in A$ is invertible in A if and only if there is $y \in A$ such that $y x=x y=1$.

We show that if there is $y \in \mathcal{B}\left(\mathbb{C}^{n}\right)$ with $x y=y x=1$, then $y \in A$. To see this, note $L_{x}: A \longrightarrow A$. So, if x is invertible in $\mathcal{B}\left(\mathbb{C}^{n}\right)$, then $y \longrightarrow x y$ is one-to-one. Since, A is finite dimensional, L_{x} is also onto. So, there is a $y A$ such that

$$
L_{x}(y)=x y=1 .
$$

Hence, $y=x^{-1} \in A$. Thus ,

$$
\begin{aligned}
G(A) & =A \cap G\left(\mathcal{B}\left(\mathbb{C}^{n}\right)\right) \\
& =\{a \in A: \operatorname{det}(a) \neq 0\}
\end{aligned}
$$

From this, we deduce for $a \in A$

$$
\sigma(a)=\{\lambda \in \mathbb{C}: a-\lambda 1 \notin G(A)\} .
$$

Hence, the spectrum of a consists of the eigenvalues of a. It is interesting to note, $\sigma(a)$ does not depend on the choice of $A \subset \mathcal{B}\left(\mathbb{C}^{n}\right)$.

