Lecture Notes from October 20, 2022

taken by Phuong Tran

Last time

- Banach algebra with and without a unit
- We had proved most of the following:

2.2 Theorem. Let A be a Banach algebra with unit 1, then there exists a norm $\|.\|_0$ that is equivalent to the norm on A and satisfies $\|1\|_0 = 1$, and for each $a, b \in A$

 $\|ab\|_{0} \leq \|a\|_{0}\|b\|_{0}$

Proof. We had $\|a\|_0 = \|L_a\| = \sup_{\|x\| \le 1} \|ax\| \le \|a\|$. It remains to show that $\|.\|$ and $\|.\|_0$ are equivalent. To see this, note

$$\|\boldsymbol{a}\| = \underbrace{\|\boldsymbol{a}1\|}_{\boldsymbol{L}_{\boldsymbol{\alpha}} \cdot (1)} \leq \|\boldsymbol{L}_{\boldsymbol{\alpha}}\| \|1\| = \|\boldsymbol{a}\|_{\boldsymbol{0}} \|1\| \leq \|\boldsymbol{a}\| \|1\|$$

SO

$$\frac{1}{\|\mathbb{1}\|} \|\mathfrak{a}\| \le \|\mathfrak{a}\|_{\mathfrak{0}} \le \|\mathfrak{a}\|$$

From now on, we assume that if 1 is a unit in a Banach algebra, then we can assume ||1|| = 1. Next, we study C*-algebras where $||a|| = ||L_a||$ for each $a \in A$.

2.3 Theorem. Let A be a C*-algebra, then

- (1) If $L_a : x \mapsto ax$ as above, then $||a|| = ||L_a||$. In particular, if 1 is a unit, then ||1|| = 1
- (2) If A does not have a unit, then \tilde{A} becomes a C*-algebra if we define $(\alpha, \lambda)^* = (\alpha^*, \bar{\lambda})$, and we choose the norm $\|(\alpha, \lambda)\| := \|L_{(\alpha, \lambda)}\|$ for $x \in A$

$$L_{(a,\lambda)}x = ax + \lambda x$$

Proof. (1) We have

$$\|L_{\mathfrak{a}}\|=\sup_{\|x\|\leq 1}\|L_{\mathfrak{a}}x\|=\sup_{\|x\|\leq 1}\|\mathfrak{a}x\|\leq \|\mathfrak{a}\|$$

On the other hand, $\|a a^*\| = \|a\|^2 = \|a\| \|a^*\|$, so if a = 0, nothing to show. Suppose $a \neq 0$, we let $x = \frac{a^*}{\|a\|}$ and consider

$$\begin{split} \|L_{\alpha}\| &= \sup_{\|x\| \le 1} \|L_{\alpha}x\| \ge \|L_{\alpha} \frac{a^{*}}{\|a\|} \\ &= \|a \frac{a^{*}}{\|a\|}\| = \|a| \end{split}$$

We conclude $\|a\| = \|L_a\|$. From 1 being a unit, $L_1 = id_A$, and $\|1\| = \|L_1\| = 1$

(2) Let $L : \tilde{A} \mapsto \mathcal{B}(A)$ given by $L(a, \lambda) = L_{(a,\lambda)}, L_{(a\lambda)}x = ax + \lambda x$. We omitted the proof that \tilde{A} is a Banach space. We will only show the norm property of a C*-algebra.

First, we show L is 1-1. Let $L(\alpha, \lambda) = 0$. If $\lambda = 0$, then $L_{\alpha} = 0$ so a=0. Suppose $\lambda \neq 0$, then by linearity,

$$0 = L_{(a,\lambda)}x = ax + \lambda x \implies (-\frac{1}{\lambda})ax - x = 0$$

implies that $(-\frac{1}{\lambda})a$ is a (left) unit in A which contradicts our assumption that A does not have a unit. Thus L is 1-1, and $||(a,\lambda)|| = ||L(a,\lambda)||$ is a norm which extends the norm on A.

To check the norm property, we only need to show for $x \in \tilde{A}$, $||x||^2 \le ||x^* x||$. If ||x|| = 0, nothing to show.

If 0 < r < ||x||, by definition of norm on A and the result above, we have

$$r < \|x\| = \|L_x\| = \sup_{\|y\| \le 1} \|L_x y\| = \sup_{\|y\| \le 1} \|xy\|$$

so there is $y \in A$, $||L_x y|| = ||xy|| \ge r$. Using the submultiplicity property of \tilde{A} , consider $y \equiv (y, 0)$, we have

$$\|x^* x\| \stackrel{\|y\| = \|y^*\| \le 1}{\ge} \|y^*\| \|x^* x\| \|y\| \stackrel{\text{submult}}{\ge} \|y^* x^* xy\| = \|(xy)^* xy\| \stackrel{xy \in A: \ C^* \text{-algebra}}{=} \|xy\|^2 \ge r^2$$

so taking the sup over all $r < \|x\|$ gives $\|x^* \, x\| \geq \|x^2\|$

We conclude with examples

2.4 Example. Let X be a locally compact Haudorff space that is not compact, let $A = C_0(X)$, then A does not have a unit and \tilde{A} can be thought of continuous functions with limit at infinity, with $(0,1) \equiv \mathbb{1}$. To justify this, we note $\tilde{A} \to C_b(X)$, $(f,\lambda) \mapsto f + \lambda \mathbb{1}$ can be thought if as an isometry, where $C_b(X)$ has the sup-norm.

2.5 Remark. $C_0(X)$ does not have a unit since the constant function 1 is not included in A as it does not go to 0 at infinity.

Proof. We want to identify $(f, \lambda) = f + \lambda \mathbb{1}$.

If we choose $\|(f,\lambda)\| = \|f\|_{\infty} + |\lambda|$, then $\|f + \lambda \mathbb{1}\|_{\infty} \le \|f\|_{\infty} + |\lambda|$ but the equality may not hold. If instead, we choose $\|(f,\lambda)\| = \|L_{(f,\lambda)}\|$, then Urysohn's lemma guarantees the existence of a function $g = (f,\lambda) \in \tilde{A}$ such that g(x) = 1 for $x \in K$ =compact, and g(x) = 0 where $x \notin K$.

$$\|L_{(f,\lambda)}\| = \sup_{\|x\| \le 1} |f(x) + \lambda x| = \|f + \lambda \mathbb{1}\|_{\infty}$$

Hence $\widetilde{C_0(X)}$ is a closed subspace of $C_b(X)$ which is isometrically embedded in $C_b(X)$ as a space of continuous functions that have limit at infinity.

2.6 Example. Let X be compact Hausdorff space A = C(X), $f \in A$. What is $\sigma(f)$?

We recall $g \in \mathcal{G}(A)$ means there exists $h \in C(X)$ and gh = 1 so $g(x) \neq 0$ for each $x \in X$. Conversely, if $g(x) \neq 0$ for each $x \in X$, then $h = \frac{1}{g(x)}$ is in C(X). Next, to see what the spectrum is, note $f - \lambda 1$ is invertible **if and only if** $f(x) \neq \lambda$ at any $x \in X$. Consequently, $\sigma(f) = \{\lambda : f(x) = \lambda \text{ for some } x \in X\} = f(X)$.

2.7 Example. Let X be a locally compact Hausdorff space $A = C_0(X)$. What is $\sigma(f)$?

For $f \in A$, then $f \in C(X)$ and f has limit at infinity. So if f is invertible, then $f(x) \neq 0$ for each x, and $\lim_{x\to\infty} f(x) \neq 0$. Otherwise, taking 1/f would diverges at infinity, so not give a function in \tilde{A} . In notation of \tilde{A} , (f, λ) is invertible iff $f(x) \neq 0$ for each x and $\lambda \neq 0$. Hence $\sigma(f) = f(X) \cup \{0\}$.

2.8 Example. Let $A \subset B(\mathbb{C}^n)$ be an algebra of $n \times n$ matrices containing 1. For $a \in A$, what is $\sigma(a)$?

Let $x \in A$ be invertible in A **if and only if** there is $y \in A$ s.t xy = yx = 1. We show that if there is $y \in B(\mathbb{C}^n)$ with xy = yx = 1 then $y^{-1} \in A$. To see this, note $L_x : A \to A$, so if x is invertible in $B(\mathbb{C}^n)$, then the map $y \mapsto xy$ is 1-1. Since A is finite dimensional, L_x is also onto. So there exists $y \in A$ s.t $L_x(y) = xy = 1$. Hence $x^{-1} = y \in A$. Thus $\mathcal{G}(A) = A \cap \mathcal{G}(B(\mathbb{C}^n)) = \{a \in A : \det a \neq 0\}$.

From this, we deduce for $a \in A$, $\sigma(a) = \{\lambda \in \mathbb{C} : a - \lambda \mathbb{1} \notin \mathcal{G}(A)\}$. Hence the spectrum consists of eigenvalues of a.

2.9 Remark. It is interesting to note $\sigma(a)$ does not depend on the choice of $A \subset B(\mathbb{C}^n)$