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Last time
e Banach algebra with and without a unit
e We had proved most of the following:

2.2 Theorem. Let A be a Banach algebra with unit 1, then there exists a norm ||.||o that is
equivalent to the norm on A and satisfies || 1||o = 1, and for each a,b € A

labllo < llaflollbllo

Proof. We had [|a|lo = ||La|| = supjy < [[ax|| < [|af. It remains to show that ||| and |].[[o are
equivalent. To see this, note

lafl = [lat] < |[Lall[[L] = [laflolTll < llafl [T
~——
La:(1)
so :
el < llaflo < flaf
1]
O
From now on, we assume that if 1 is a unit in a Banach algebra, then we can assume ||1|| = 1.
Next, we study C*-algebras where ||a| = ||L,|| for each a € A.

2.3 Theorem. Let A be a C*-algebra, then
(1) If L, :x — ax as above, then ||a|| = ||La||. In particular, if 1 is a unit, then ||1|| =1

(2) If A does not have a unit, then A becomes a C*-algebra if we define (a,\)* = (a*,\),
and we choose the norm ||(a,A)|| := ||L(qn ]| forx € A

LignXx = ax + Ax



Proof. (1) We have

ILall = sup |[Lax[| = sup [Jax| < |laf
[xlI<1 lIxlI<1
On the other hand, ||a a*|| = ||a||* = ||a||||a*||, so if @ = 0, nothing to show.

Suppose a #£ 0, we let x = H%H and consider

*

a
|Lall = sup [[Lax|| > ||La 7
Ix1<1 all
ax
= |la = =q]
all

We conclude ||a|| = ||Lq||. From 1 being a unit, Ly =1ida, and ||1]] = ||L1]| =1

(2) Let L: A — B(A) given by L(a,\) = Lian)y Lianyx = ax 4+ Ax. We omitted the proof
that A is a Banach space. We will only show the norm property of a C*-algebra.

First, we show L is 1-1. Let L(a,A) = 0. If A =0, then L, = 0 so a=0. Suppose A # 0,
then by linearity,

1
O=Lgx=ax+Ax = (—X)ax—x =0

implies that (—%)a is a (left) unit in A which contradicts our assumption that A does not have
a unit. Thus Lis 1-1, and |[(a,A)|| = ||L(a, A)]|| is @ norm which extends the norm on A.

To check the norm property, we only need to show for x € A, [x||> < [[x* x]|.
If ||x|| =0, nothing to show. )
If 0 <1 < ||x||, by definition of norm on A and the result above, we have

< [Ix[] = L] = sup [[Lyy[l = sup [xy]|
yll<1 fyll<1

so thereisy € A, [[Lyl| = [[xy[| > .
Using the submultiplicity property of A, consider y = (y,0), we have

" yll=lly*1I<1 N N submult . .
x =yt x][ lyll = ly™ xyll = [[(xy)*xy||

XYEA: (;-algebra HXQHZ > Tz

so taking the sup over all T < ||x|| gives ||x* x| > [|x?| O

We conclude with examples

2.4 Example. Let X be a locally compact Haudorff space that is not compact, let A = Cy(X),
then A does not have a unit and A can be thought of continuous functions with limit at infinity,
with (0,1) = 1. To justify this, we note A — Cy(X), (f,A) — f+ AL can be thought if as an
isometry, where Cy(X) has the sup-norm.

2.5 Remark. Cy(X) does not have a unit since the constant function 1 is not included in A as it
does not go to 0 at infinity.



Proof. We want to identify (f,A) = f + AL.

If we choose ||(f,A)|| = ||f]|co + Al, then ||f +AT||oo < ||f]|co + |Al but the equality may not hold.
If instead, we choose ||(f,A)|| = ||L(s) ||, then Urysohn's lemma guarantees the existence of a
function g = (f,A) € A such that g(x) =1 for x € K=compact, and g(x) = 0 where x ¢ K.

ILien || = sup [F(x) +Ax| = [If + A1/

fIx|I<1
Hence (/Z(;(\X/) is a closed subspace of Cy,(X) which is isometrically embedded in Cy,(X) as a space
of continuous functions that have limit at infinity. O

2.6 Example. Let X be compact Hausdorff space A = C(X), f € A. What is o(f)?

We recall g € G(A) means there exists h € C(X) and gh =1 so g(x) # 0 for each x € X.
Conversely, if g(x) # 0 for each x € X, then h = ﬁ is in C(X).
Next, to see what the spectrum is, note f — A1 is invertible if and only if f(x) # A at any x € X.
Consequently, o(f) ={A: f(x) = A for some x € X} = f(X).

2.7 Example. Let X be a locally compact Hausdorff space A = Cy(X). What is o(f)?

For f € A, then f € C(X) and f has limit at infinity. So if f is invertible, then f(x) % 0
for each x, and lim f(x) # 0. Otherwise, taking 1/f would diverges at infinity, so not give a

X—00

function in A. In notation of A, (f,A) is invertible iff f(x) # 0 for each x and A # 0. Hence
o(f) = f(X) U{0}.

2.8 Example. Let A C B(C") be an algebra of n x n matrices containing 1. For a € A, what
is o(a)?

Let x € A be invertible in A if and only if there isy € A s.t xy = yx = 1. We show that
if there is y € B(C") with xy =yx = 1 then y~' € A. To see this, note L,: A — A, so if x is
invertible in B(C™), then the map y — xy is 1-1. Since A is finite dimensional, L, is also onto.
So there exists y € A s.t L, (y) =xy = 1. Hence x ' =y € A.

Thus G(A) =ANGB(C")) ={a e A: det a #0}.
From this, we deduce fora € A, o(a) ={A € C: a—A1l ¢ G(A)}. Hence the spectrum consists
of eigenvalues of a.

2.9 Remark. It is interesting to note o(a) does not depend on the choice of A C B(C")



