Lecture Notes from October 20, 2022

taken by Phuong Tran

Last time

- Banach algebra with and without a unit
- We had proved most of the following:
2.2 Theorem. Let A be a Banach algebra with unit $\mathbb{1}$, then there exists a norm $\|.\|_{0}$ that is equivalent to the norm on A and satisfies $\|\mathbb{1}\|_{0}=1$, and for each $a, b \in A$

$$
\|a b\|_{0} \leq\|a\|_{0}\|b\|_{0}
$$

Proof. We had $\|\mathrm{a}\|_{0}=\left\|\mathrm{L}_{\mathrm{a}}\right\|=\sup _{\|x\| \leq 1}\|\mathrm{ax}\| \leq\|\mathrm{a}\|$. It remains to show that $\|$.$\| and \|$. $\|_{0}$ are equivalent. To see this, note

$$
\|a\|=\underbrace{\|a \mathbb{1}\|}_{L_{a} \cdot(\mathbb{1})} \leq\left\|L_{a}\right\|\|\mathbb{1}\|=\|a\|_{0}\|\mathbb{1}\| \leq\|a\|\|\mathbb{1}\|
$$

so

$$
\frac{1}{\|\mathbb{1}\|}\|a\| \leq\|a\|_{0} \leq\|a\|
$$

From now on, we assume that if $\mathbb{1}$ is a unit in a Banach algebra, then we can assume $\|\mathbb{1}\|=1$. Next, we study C^{*}-algebras where $\|a\|=\left\|L_{a}\right\|$ for each $a \in A$.
2.3 Theorem. Let A be a C*-algebra, then
(1) If $\mathrm{L}_{\mathrm{a}}: \mathrm{x} \mapsto \mathrm{ax}$ as above, then $\|\mathrm{a}\|=\left\|\mathrm{L}_{\mathrm{a}}\right\|$. In particular, if $\mathbb{1}$ is a unit, then $\|\mathbb{1}\|=1$
(2) If A does not have a unit, then \tilde{A} becomes a C^{*}-algebra if we define $(a, \lambda)^{*}=\left(a^{*}, \bar{\lambda}\right)$, and we choose the norm $\|(\mathrm{a}, \lambda)\|:=\left\|\mathrm{L}_{(\mathrm{a}, \lambda)}\right\|$ for $\mathrm{x} \in A$

$$
\mathrm{L}_{(\mathrm{a}, \lambda)} x=\mathrm{a} x+\lambda x
$$

Proof. (1) We have

$$
\left\|L_{a}\right\|=\sup _{\|x\| \leq 1}\left\|L_{a} x\right\|=\sup _{\|x\| \leq 1}\|a x\| \leq\|a\|
$$

On the other hand, $\left\|a a^{*}\right\|=\|a\|^{2}=\|a\|\left\|a^{*}\right\|$, so if $a=0$, nothing to show.
Suppose $a \neq 0$, we let $x=\frac{a^{*}}{\|a\|}$ and consider

$$
\begin{aligned}
\left\|L_{a}\right\|=\sup _{\|x\| \leq 1}\left\|L_{a} x\right\| & \geq\left\|L_{a} \frac{a^{*}}{\|a\|}\right\| \\
& =\left\|a \frac{a *}{\|a\|}\right\|=\|a\|
\end{aligned}
$$

We conclude $\|a\|=\left\|L_{a}\right\|$. From $\mathbb{1}$ being a unit, $L_{1}=i d_{A}$, and $\|\mathbb{1}\|=\left\|L_{1}\right\|=1$
(2) Let $\mathrm{L}: \tilde{A} \mapsto \mathcal{B}(A)$ given by $\mathrm{L}(\mathrm{a}, \lambda)=\mathrm{L}_{(\mathrm{a}, \lambda)}, \mathrm{L}_{(\mathrm{a} \mathrm{\lambda)}} x=\mathrm{ax}+\lambda x$. We omitted the proof that \tilde{A} is a Banach space. We will only show the norm property of a C^{*}-algebra.

First, we show L is 1-1. Let $L(a, \lambda)=0$. If $\lambda=0$, then $L_{a}=0$ so $a=0$. Suppose $\lambda \neq 0$, then by linearity,

$$
0=\mathrm{L}_{(a, \lambda)} x=\mathrm{ax}+\lambda x \Longrightarrow\left(-\frac{1}{\lambda}\right) \mathrm{ax}-\mathrm{x}=0
$$

implies that $\left(-\frac{1}{\lambda}\right) a$ is a (left) unit in A which contradicts our assumption that A does not have a unit. Thus L is $1-1$, and $\|(a, \lambda)\|=\|L(a, \lambda)\|$ is a norm which extends the norm on A.

To check the norm property, we only need to show for $x \in \tilde{A},\|x\|^{2} \leq\left\|x^{*} x\right\|$. If $\|x\|=0$, nothing to show.
If $0<r<\|x\|$, by definition of norm on \tilde{A} and the result above, we have

$$
r<\|x\|=\left\|L_{x}\right\|=\sup _{\|y\| \leq 1}\left\|L_{x} y\right\|=\sup _{\|y\| \leq 1}\|x y\|
$$

so there is $y \in A,\left\|L_{x} y\right\|=\|x y\| \geq r$.
Using the submultiplicity property of \tilde{A}, consider $y \equiv(y, 0)$, we have

$$
\left\|x^{*} x\right\| \stackrel{\|y\|=\left\|y^{*}\right\| \leq 1}{\geq}\left\|y^{*}\right\|\left\|x^{*} x\right\|\|y\| \stackrel{\text { submult }}{\geq}\left\|y^{*} x^{*} x y\right\|=\left\|(x y)^{*} x y\right\| \stackrel{x y \in A: C^{*} \text {-algebra }}{=}\|x y\|^{2} \geq r^{2}
$$

so taking the sup over all $r<\|x\|$ gives $\left\|x^{*} x\right\| \geq\left\|x^{2}\right\|$

We conclude with examples
2.4 Example. Let X be a locally compact Haudorff space that is not compact, let $A=C_{0}(X)$, then A does not have a unit and \tilde{A} can be thought of continuous functions with limit at infinity, with $(0,1) \equiv \mathbb{1}$. To justify this, we note $\tilde{A} \rightarrow C_{b}(X),(f, \lambda) \mapsto f+\lambda \mathbb{1}$ can be thought if as an isometry, where $\mathrm{C}_{\mathrm{b}}(\mathrm{X})$ has the sup-norm.
2.5 Remark. $C_{0}(X)$ does not have a unit since the constant function $\mathbb{1}$ is not included in A as it does not go to 0 at infinity.

Proof. We want to identify $(f, \lambda)=f+\lambda \mathbb{1}$.
If we choose $\|(f, \lambda)\|=\|f\|_{\infty}+|\lambda|$, then $\|f+\lambda \mathbb{1}\|_{\infty} \leq\|f\|_{\infty}+|\lambda|$ but the equality may not hold. If instead, we choose $\|(f, \lambda)\|=\left\|\mathrm{L}_{(f, \lambda)}\right\|$, then Urysohn's lemma guarantees the existence of a function $g=(f, \lambda) \in \tilde{A}$ such that $g(x)=1$ for $x \in K=$ compact, and $g(x)=0$ where $x \notin K$.

$$
\left\|\mathrm{L}_{(f, \lambda)}\right\|=\sup _{\|x\| \leq 1}|f(x)+\lambda x|=\|f+\lambda \mathbb{1}\|_{\infty}
$$

Hence $\widetilde{C_{0}(X)}$ is a closed subspace of $C_{b}(X)$ which is isometrically embedded in $C_{b}(X)$ as a space of continuous functions that have limit at infinity.
2.6 Example. Let X be compact Hausdorff space $A=C(X), f \in A$. What is $\sigma(f)$?

We recall $g \in \mathcal{G}(A)$ means there exists $h \in C(X)$ and $g h=\mathbb{1}$ so $g(x) \neq 0$ for each $x \in X$. Conversely, if $g(x) \neq 0$ for each $x \in X$, then $h=\frac{1}{g(x)}$ is in $C(X)$.
Next, to see what the spectrum is, note $f-\lambda \mathbb{1}$ is invertible if and only if $f(x) \neq \lambda$ at any $x \in X$. Consequently, $\sigma(f)=\{\lambda: f(x)=\lambda$ for some $x \in X\}=f(X)$.
2.7 Example. Let X be a locally compact Hausdorff space $A=C_{0}(X)$. What is $\sigma(f)$?

For $f \in \tilde{A}$, then $f \in C(X)$ and f has limit at infinity. So if f is invertible, then $f(x) \neq 0$ for each x, and $\lim _{x \rightarrow \infty} f(x) \neq 0$. Otherwise, taking $1 / f$ would diverges at infinity, so not give a function in \tilde{A}. In notation of $\tilde{A},(f, \lambda)$ is invertible iff $f(x) \neq 0$ for each x and $\lambda \neq 0$. Hence $\sigma(f)=f(X) \cup\{0\}$.
2.8 Example. Let $A \subset B\left(\mathbb{C}^{n}\right)$ be an algebra of $n \times n$ matrices containing $\mathbb{1}$. For $a \in A$, what is $\sigma(\mathrm{a})$?

Let $x \in A$ be invertible in A if and only if there is $y \in A$ s.t $x y=y x=\mathbb{1}$. We show that if there is $y \in B\left(\mathbb{C}^{n}\right)$ with $x y=y x=\mathbb{1}$ then $y^{-1} \in A$. To see this, note $L_{x}: A \rightarrow A$, so if x is invertible in $B\left(\mathbb{C}^{n}\right)$, then the map $y \mapsto x y$ is 1-1. Since A is finite dimensional, L_{x} is also onto. So there exists $y \in A$ s.t $L_{x}(y)=x y=\mathbb{1}$. Hence $x^{-1}=y \in A$.
Thus $\mathcal{G}(A)=A \cap \mathcal{G}\left(B\left(\mathbb{C}^{n}\right)\right)=\{a \in A$: $\operatorname{det} a \neq 0\}$.
From this, we deduce for $a \in A, \sigma(a)=\{\lambda \in \mathbb{C}: a-\lambda \mathbb{1} \notin \mathcal{G}(A)\}$. Hence the spectrum consists of eigenvalues of a.
2.9 Remark. It is interesting to note $\sigma(a)$ does not depend on the choice of $A \subset B\left(\mathbb{C}^{n}\right)$

