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Last time

• Banach algebra with and without a unit

• We had proved most of the following:

2.2 Theorem. Let A be a Banach algebra with unit 1, then there exists a norm ∥.∥0 that is
equivalent to the norm on A and satisfies ∥1∥0 = 1, and for each a, b ∈ A

∥ab∥0 ≤ ∥a∥0∥b∥0

Proof. We had ∥a∥0 = ∥La∥ = sup∥x∥≤1 ∥ax∥ ≤ ∥a∥. It remains to show that ∥.∥ and ∥.∥0 are
equivalent. To see this, note

∥a∥ = ∥a1∥︸ ︷︷ ︸
La·(1)

≤ ∥La∥∥1∥ = ∥a∥0∥1∥ ≤ ∥a∥ ∥1∥

so
1

∥1∥
∥a∥ ≤ ∥a∥0 ≤ ∥a∥

From now on, we assume that if 1 is a unit in a Banach algebra, then we can assume ∥1∥ = 1.
Next, we study C∗-algebras where ∥a∥ = ∥La∥ for each a ∈ A.

2.3 Theorem. Let A be a C∗-algebra, then

(1) If La : x 7→ ax as above, then ∥a∥ = ∥La∥. In particular, if 1 is a unit, then ∥1∥ = 1

(2) If A does not have a unit, then Ã becomes a C∗-algebra if we define (a, λ)∗ = (a∗, λ̄),
and we choose the norm ∥(a, λ)∥ := ∥L(a,λ)∥ for x ∈ A

L(a,λ)x = ax+ λx
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Proof. (1) We have
∥La∥ = sup

∥x∥≤1

∥Lax∥ = sup
∥x∥≤1

∥ax∥ ≤ ∥a∥

On the other hand, ∥aa∗∥ = ∥a∥2 = ∥a∥ ∥a∗∥, so if a = 0, nothing to show.
Suppose a ̸= 0, we let x = a∗

∥a∥ and consider

∥La∥ = sup
∥x∥≤1

∥Lax∥ ≥ ∥La

a∗

∥a∥
∥

= ∥a a∗
∥a∥

∥ = ∥a∥

We conclude ∥a∥ = ∥La∥. From 1 being a unit, L1 = idA, and ∥1∥ = ∥L1∥ = 1

(2) Let L : Ã 7→ B(A) given by L(a, λ) = L(a,λ), L(aλ)x = ax + λx. We omitted the proof

that Ã is a Banach space. We will only show the norm property of a C∗-algebra.
First, we show L is 1-1. Let L(a, λ) = 0. If λ = 0, then La = 0 so a=0. Suppose λ ̸= 0,

then by linearity,

0 = L(a,λ)x = ax+ λx =⇒ (−
1

λ
)ax− x = 0

implies that (− 1
λ
)a is a (left) unit in A which contradicts our assumption that A does not have

a unit. Thus L is 1-1, and ∥(a, λ)∥ = ∥L(a, λ)∥ is a norm which extends the norm on A.

To check the norm property, we only need to show for x ∈ Ã, ∥x∥2 ≤ ∥x∗ x∥.
If ∥x∥ = 0, nothing to show.
If 0 < r < ∥x∥, by definition of norm on Ã and the result above, we have

r < ∥x∥ = ∥Lx∥ = sup
∥y∥≤1

∥Lxy∥ = sup
∥y∥≤1

∥xy∥

so there is y ∈ A, ∥Lxy∥ = ∥xy∥ ≥ r.
Using the submultiplicity property of Ã, consider y ≡ (y, 0), we have

∥x∗ x∥
∥y∥=∥y∗∥≤1

≥ ∥y∗∥ ∥x∗ x∥ ∥y∥
submult
≥ ∥y∗x∗ xy∥ = ∥(xy)∗xy∥ xy∈A:C∗-algebra

= ∥xy∥2 ≥ r2

so taking the sup over all r < ∥x∥ gives ∥x∗ x∥ ≥ ∥x2∥

We conclude with examples

2.4 Example. Let X be a locally compact Haudorff space that is not compact, let A = C0(X),
then A does not have a unit and Ã can be thought of continuous functions with limit at infinity,
with (0, 1) ≡ 1. To justify this, we note Ã → Cb(X), (f, λ) 7→ f + λ1 can be thought if as an
isometry, where Cb(X) has the sup-norm.

2.5 Remark. C0(X) does not have a unit since the constant function 1 is not included in A as it
does not go to 0 at infinity.
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Proof. We want to identify (f, λ) = f+ λ1.
If we choose ∥(f, λ)∥ = ∥f∥∞+ |λ|, then ∥f+λ1∥∞ ≤ ∥f∥∞+ |λ| but the equality may not hold.
If instead, we choose ∥(f, λ)∥ = ∥L(f,λ)∥, then Urysohn’s lemma guarantees the existence of a

function g = (f, λ) ∈ Ã such that g(x) = 1 for x ∈ K=compact, and g(x) = 0 where x /∈ K.

∥L(f,λ)∥ = sup
∥x∥≤1

|f(x) + λx| = ∥f+ λ1∥∞

Hence C̃0(X) is a closed subspace of Cb(X) which is isometrically embedded in Cb(X) as a space
of continuous functions that have limit at infinity.

2.6 Example. Let X be compact Hausdorff space A = C(X), f ∈ A. What is σ(f)?

We recall g ∈ G(A) means there exists h ∈ C(X) and gh = 1 so g(x) ̸= 0 for each x ∈ X.
Conversely, if g(x) ̸= 0 for each x ∈ X, then h = 1

g(x)
is in C(X).

Next, to see what the spectrum is, note f−λ1 is invertible if and only if f(x) ̸= λ at any x ∈ X.
Consequently, σ(f) = {λ : f(x) = λ for some x ∈ X} = f(X).

2.7 Example. Let X be a locally compact Hausdorff space A = C0(X). What is σ(f)?

For f ∈ Ã, then f ∈ C(X) and f has limit at infinity. So if f is invertible, then f(x) ̸= 0

for each x, and lim
x→∞ f(x) ̸= 0. Otherwise, taking 1/f would diverges at infinity, so not give a

function in Ã. In notation of Ã, (f, λ) is invertible iff f(x) ̸= 0 for each x and λ ̸= 0. Hence
σ(f) = f(X) ∪ {0}.

2.8 Example. Let A ⊂ B(Cn) be an algebra of n × n matrices containing 1. For a ∈ A, what
is σ(a)?

Let x ∈ A be invertible in A if and only if there is y ∈ A s.t xy = yx = 1. We show that
if there is y ∈ B(Cn) with xy = yx = 1 then y−1 ∈ A. To see this, note Lx : A → A, so if x is
invertible in B(Cn), then the map y 7→ xy is 1-1. Since A is finite dimensional, Lx is also onto.
So there exists y ∈ A s.t Lx(y) = xy = 1. Hence x−1 = y ∈ A.
Thus G(A) = A ∩ G(B(Cn)) = {a ∈ A : det a ̸= 0}.
From this, we deduce for a ∈ A, σ(a) = {λ ∈ C : a−λ1 /∈ G(A)}. Hence the spectrum consists
of eigenvalues of a.

2.9 Remark. It is interesting to note σ(a) does not depend on the choice of A ⊂ B(Cn)
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