The tale of two norms on \tilde{A} and Properties of the spectrum

Lecture Notes from October 25, 2022 taken by An Vu

Last Time

- Properties of the embedding $A \to \tilde{A}$ when A is a a C*-algebra.
- Examples of C*-algebra and spectra of elements.

Recap: A Tale of two norms on \tilde{A}

1. Let A be a Banach algebra, $\tilde{A} = A \times \mathbb{C} = A \oplus \mathbb{C}$, with norm $||(a, \lambda)|| = ||a|| + |\lambda|$. Then \tilde{A} is Banach. This has been shown in the Warm-up in October 18 notes.

When considering $A = C_0(X)$, X locally compact but not compact, if for $f \in A$, $f : X \to \mathbb{C}$, $f(x) \ge 0$ for all $x \in X$, and $||f||_{\infty} = 1$, then

$$||(f,1)|| = ||f||_{\infty} + 1 = 2,$$

and

$$\|(-f,1)\| = \|-f\|_{\infty} + 1 = 2,$$

so this does not coincide with

$$\|1+f\|_{\infty}=2,$$

and

$$||1 - f||_{\infty} = 1.$$

Rudin commented that this norm is a good start, but it does not work quite the way we would like it to be obtained from a norm on a function space, e.g. the sup-norm.

2. We consider another norm on \tilde{A} induced by L,

$$||(a,\lambda)|| = ||L_{(a,\lambda)}|| = \sup_{\substack{x \in A \\ ||x|| \le 1}} ||ax + \lambda x||.$$

When considering $A = C_0(X)$,

$$\|(a,\lambda)\| = \sup_{\substack{f \in C_0(X)\\ \|f\|_{\infty} \le 1\\ x \in X}} \|a(x)f(x) + \lambda f(x)\|,$$

and indeed, $\|(a,\lambda)\| = \|a + \lambda 1\|_{\infty}$.

In case (1), \tilde{A} has been shown to be Banach, but in case (2), to show \tilde{A} is Banach, i.e. complete, we need to recall the following Lemma.

Warm up

0.0 Lemma. Let ϕ be a linear functional on a normed space. Then ϕ is bounded if and only if ker ϕ is closed.

Proof. Assume ϕ is bounded. Then by continuity, ker ϕ is closed. Next, we prove the converse by contrapositive, i.e. we need to show if ϕ is not bounded, then ker ϕ is not closed:

If ϕ is unbounded, then there is a sequence $(x_n) \in A$ such that for each $n \in \mathbb{N}, ||x_n|| \leq 1$ and $|\phi(x_n)| \to \infty$.

Consider $a \notin \ker \phi$, i.e. $\phi(a) \neq 0$, and choose

$$y_n = a - \frac{x_n}{\phi(x_n)}\phi(a).$$

Note that $\phi(x_n) = 0$ for some n is not a problem. We see that $\phi(y_n) = \phi(a) - \frac{\phi(x_n)}{\phi(x_n)}\phi(a) = 0$, so each y_n is in ker ϕ . We also see $y_n \to a$ by $\phi(x_n) \to \infty$, but $a \notin \ker \phi$. Thus, ker ϕ is not closed.

We are now ready to complete the material from last time.

1 The Banach space A

1.1 Proposition. Let A be a C*-algebra without unit, then \tilde{A} , equipped with the norm induced by L, is a Banach space.

Proof. For $(a, \lambda) \in \tilde{A}$, let $\pi_2(a, \lambda) = (0, \lambda)$ be a linear functional, then

$$\ker \pi_2 = (A, 0) \cong A,$$

since ||(a,0)|| = ||a|| + 0 = ||a|| for each $a \in A$, and by completeness of A, ker π_2 is closed.

Then, by previous Lemma, π_2 is a bounded linear map.

Consequently, $\pi_1(a, \lambda) := (a, 0)$ is bounded because

$$\pi_1(a,\lambda) = (a,\lambda) - \pi_2(a,\lambda).$$

Take a Cauchy sequence $(a_n, \lambda_n) \in A$, then $\pi_1(a_n, \lambda_n)$ is Cauchy, and so is $\pi_2(a_n, \lambda_n)$, and by completeness of $A \times \{0\}$ and $\{0\} \times \mathbb{C}$, we have $a_n \to a$ and $\lambda_n \to \lambda$.

Next, by

$$||L_{(b,\mu)}|| = ||L_{(b,0)} + L_{(0,\mu)}|| \le ||L_{(b,0)}|| + ||L_{(0,\mu)}||,$$

we get

$$\|L_{(a_n,\lambda_n)} - L_{(a,\lambda)}\| = \|L_{(a_n,0)} + L_{(0,\lambda_n)} - L_{(a,0)} - L_{(0,\lambda)}\| \le \|L_{(a_n,0)} - L_{(a,0)}\| + \|L_{(0,\lambda_n)} - L_{(0,\lambda)}\|,$$

and since $a_n \to a$ and $\lambda_n \to \lambda$, $L_{(a_n,\lambda_n)} - L_{(a,\lambda)} \to 0$ and $L_{(0,\lambda_n)} - L_{(0,\lambda)} \to 0$ by A being a C*-algebra. Thus, $||L_{(a_n,\lambda_n)} - L_{(a,\lambda)}|| \to 0$, and thanks to completeness of $A \times \{0\}$ and $\{0\} \times \mathbb{C}$ again, we get that $L_{(a_n,\lambda_n)} \to L_{(a,\lambda)}$. Therefore, \tilde{A} equipped with the L-induced norm is complete, and hence, Banach.

2 Properties of the Spectrum

In the case of finite dimensional complex Hilbert spaces, we saw the spectrum is non-empty because the characteristic polynomial of a matrix has at least one root (by Fundamental Theorem of Algebra).

In this section, we show that, for $a \in A$, where A is a Banach algebra, $\sigma(a)$ is non-empty, but first, we need some complex analysis.

2.1 Theorem. Suppose A is a Banach algebra with unit 1, and ||1|| = 1. We have the following properties:

1. For ||x|| < 1, 1 - x is invertible, and $(1 - x)^{-1} = \sum_{n=0}^{\infty}$. This series is called Neumann series. Moreover,

$$||(1-x)^{-1}|| = \frac{1}{1-||x||},$$

and

$$||(1-x)^{-1} - 1|| \le \frac{||x||}{1 - ||x||}.$$

- 2. G(A) is an open subset of A. More precisely, if $r = \frac{1}{\|a^{-1}\|}$, $B_r(a) \subset G(A)$, for each $a \in G(A)$. Also, G(A) forms a group whose operations (multiplication and inverse) are continuous.
- 3. For each $a \in A$, $\sigma(a)$ is a compact subset of \mathbb{C} , and $r(a) \leq ||a||$, where r(a) is called the spectral radius of a.
- The function R from the resolvent set ρ(a) of a to A, defined by λ → (a − λ1)⁻¹, is continuous and even analytic, i.e. for each a ∈ A, λ₀ ∈ ρ(a), there is r > 0 such that, for λ ∈ B_r(λ₀),

$$R(\lambda) = \sum_{n=0}^{\infty} a_n(\lambda_0)(\lambda - \lambda_0)^n,$$

with some sequence $(a_n(\lambda_0)) \in A$ such that the series $R(\lambda)$ converges in the norm of A.

Proof. 1. The convergence of the Neumann series follows from

$$\sum_{n=0}^{\infty} \|x^n\| \le \sum_{n=0}^{\infty} = \frac{1}{1 - \|x\|} \le \infty.$$

Let $y = \sum_{n=0}^{\infty} x^n$. Then

$$y(1-x) = (1-x)y = (1+x+x^2+x^3+\dots) - (x+x^2+x^3+\dots) = 1,$$

so $y = (1 - x)^{-1}$.

The norm of y, by the above definition of y, is bounded by $||y|| \le \frac{1}{1-||x||}$. The second norm estimate follows from

$$||y-1|| = ||\sum_{n=1}^{\infty} x^n|| \le ||x|| \sum_{n=0}^{\infty} ||x^n|| = ||x|| \frac{1}{1-||x||}.$$

2. From submultiplicativity of A, we get that the map $(a, b) \mapsto ab$ is continuous on $A \times A$. From part (1), we also see that $z \mapsto z^{-1}$ is continuous at 1, since if $x_n \to 0$, then $(1-x_n)^{-1} \to 1$. The rest of the proof will be in October 27 notes.