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Last Time

� Properties of the embedding A → Ã when A is a a C*-algebra.

� Examples of C*-algebra and spectra of elements.

Recap: A Tale of two norms on Ã

1. Let A be a Banach algebra, Ã = A× C = A⊕ C, with norm ∥(a, λ)∥ = ∥a∥+ |λ|. Then
Ã is Banach. This has been shown in the Warm-up in October 18 notes.

When considering A = C0(X), X locally compact but not compact, if for f ∈ A, f : X →
C, f(x) ≥ 0 for all x ∈ X, and ∥f∥∞ = 1, then

∥(f, 1)∥ = ∥f∥∞ + 1 = 2,

and
∥(−f, 1)∥ = ∥ − f∥∞ + 1 = 2,

so this does not coincide with
∥1 + f∥∞ = 2,

and
∥1− f∥∞ = 1.

Rudin commented that this norm is a good start, but it does not work quite the way we
would like it to be obtained from a norm on a function space, e.g. the sup-norm.

2. We consider another norm on Ã induced by L,

∥(a, λ)∥ = ∥L(a,λ)∥ = sup
x∈A
∥x∥≤1

∥ax+ λx∥.
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When considering A = C0(X),

∥(a, λ)∥ = sup
f∈C0(X)
∥f∥∞≤1
x∈X

∥a(x)f(x) + λf(x)∥,

and indeed, ∥(a, λ)∥ = ∥a+ λ1∥∞.

In case (1), Ã has been shown to be Banach, but in case (2), to show Ã is Banach, i.e.
complete, we need to recall the following Lemma.

Warm up

0.0 Lemma. Let ϕ be a linear functional on a normed space. Then ϕ is bounded if and only if
kerϕ is closed.

Proof. Assume ϕ is bounded. Then by continuity, kerϕ is closed. Next, we prove the converse
by contrapositive, i.e. we need to show if ϕ is not bounded, then kerϕ is not closed:

If ϕ is unbounded, then there is a sequence (xn) ∈ A such that for each n ∈ N, ∥xn∥ ≤ 1
and |ϕ(xn)| → ∞.

Consider a /∈ kerϕ, i.e. ϕ(a) ̸= 0, and choose

yn = a− xn

ϕ(xn)
ϕ(a).

Note that ϕ(xn) = 0 for some n is not a problem. We see that ϕ(yn) = ϕ(a)− ϕ(xn)
ϕ(xn)

ϕ(a) = 0,

so each yn is in kerϕ. We also see yn → a by ϕ(xn) → ∞, but a /∈ kerϕ. Thus, kerϕ is not
closed.

We are now ready to complete the material from last time.

1 The Banach space Ã

1.1 Proposition. Let A be a C*-algebra without unit, then Ã, equipped with the norm induced
by L, is a Banach space.

Proof. For (a, λ) ∈ Ã, let π2(a, λ) = (0, λ) be a linear functional, then

kerπ2 = (A, 0) ∼= A,

since ∥(a, 0)∥ = ∥a∥+ 0 = ∥a∥ for each a ∈ A, and by completeness of A, kerπ2 is closed.
Then, by previous Lemma, π2 is a bounded linear map.
Consequently, π1(a, λ) := (a, 0) is bounded because

π1(a, λ) = (a, λ)− π2(a, λ).

Take a Cauchy sequence (an, λn) ∈ Ã, then π1(an, λn) is Cauchy, and so is π2(an, λn), and by
completeness of A× {0} and {0} × C, we have an → a and λn → λ.
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Next, by
∥L(b,µ)∥ = ∥L(b,0) + L(0,µ)∥ ≤ ∥L(b,0)∥+ ∥L(0,µ)∥,

we get

∥L(an,λn) −L(a,λ)∥ = ∥L(an,0) +L(0,λn) −L(a,0) −L(0,λ∥ ≤ ∥L(an,0) −L(a,0)∥+ ∥L(0,λn) −L(0,λ∥,

and since an → a and λn → λ, L(an,λn) − L(a,λ) → 0 and L(0,λn) − L(0,λ) → 0 by A being
a C*-algebra. Thus, ∥L(an,λn) − L(a,λ)∥ → 0, and thanks to completeness of A × {0} and

{0} × C again, we get that L(an,λn) → L(a,λ). Therefore, Ã equipped with the L-induced norm
is complete, and hence, Banach.

2 Properties of the Spectrum

In the case of finite dimensional complex Hilbert spaces, we saw the spectrum is non-empty
because the characteristic polynomial of a matrix has at least one root (by Fundamental Theorem
of Algebra).

In this section, we show that, for a ∈ A, where A is a Banach algebra, σ(a) is non-empty,
but first, we need some complex analysis.

2.1 Theorem. Suppose A is a Banach algebra with unit 1, and ∥1∥ = 1. We have the following
properties:

1. For ∥x∥ < 1, 1 − x is invertible, and (1 − x)−1 =
∑∞

n=0. This series is called Neumann
series. Moreover,

∥(1− x)−1∥ =
1

1− ∥x∥
,

and

∥(1− x)−1 − 1∥ ≤ ∥x∥
1− ∥x∥

.

2. G(A) is an open subset of A. More precisely, if r = 1
∥a−1∥ , Br(a) ⊂ G(A), for each

a ∈ G(A). Also, G(A) forms a group whose operations (multiplication and inverse) are
continuous.

3. For each a ∈ A, σ(a) is a compact subset of C, and r(a) ≤ ∥a∥, where r(a) is called the
spectral radius of a.

4. The function R from the resolvent set ρ(a) of a to A, defined by λ 7→ (a − λ1)−1, is
continuous and even analytic, i.e. for each a ∈ A, λ0 ∈ ρ(a), there is r > 0 such that, for
λ ∈ Br(λ0),

R(λ) =
∞∑
n=0

an(λ0)(λ− λ0)
n,

with some sequence (an(λ0)) ∈ A such that the series R(λ) converges in the norm of A.
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Proof. 1. The convergence of the Neumann series follows from

∞∑
n=0

∥xn∥ ≤
∞∑
n=0

=
1

1− ∥x∥
≤ ∞.

Let y =
∑∞

n=0 x
n. Then

y(1− x) = (1− x)y = (1 + x+ x2 + x3 + ...)− (x+ x2 + x3 + ...) = 1,

so y = (1− x)−1.

The norm of y, by the above definition of y, is bounded by ∥y∥ ≤ 1
1−∥x∥ .

The second norm estimate follows from

∥y − 1∥ = ∥
∞∑
n=1

xn∥ ≤ ∥x∥
∞∑
n=0

∥xn∥ = ∥x∥ 1

1− ∥x∥
.

2. From submultiplicativity of A, we get that the map (a, b) 7→ ab is continuous on A × A.
From part (1), we also see that z 7→ z−1 is continuous at 1, since if xn → 0, then
(1− xn)

−1 → 1. The rest of the proof will be in October 27 notes.
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