Lecture Notes from October 25, 2022

taken by Nick Fularczyk

Last time

- Properties of the embedding $A \mapsto \tilde{A}$ when A is a C*-algebra
- Examples of C*-algebras and spectra of elements

Recap: A tale of two norms on A

i) Let A be a Banach algebra, $A = A \times \mathbb{C} = A \oplus \mathbb{C}$ with norm $||(a, \lambda)|| = ||a|| + |\lambda|$ for each $(a, \lambda) \in \tilde{A}$, then \tilde{A} is Banach. As an example, let us consider $A = C_0(X)$, X locally compact Hausdorff but not compact. If $f : X \mapsto \mathbb{C}$, $f(x) \ge 0$ for each $x \in X$, $||f||_{\infty} = 1$, then

$$||(f,1)|| = ||f||_{\infty} + 1 = 2$$

and

$$\|(-f,1)\| = \|-f\|_{\infty} + 1 = 2$$

which does not coincide with

$$||1 + f||_{\infty} = 2$$

and

 $||1 - f||_{\infty} = 1.$

This illustrates that we might want to consider another norm.

ii) Because we would like to embed A obtained from $A = C_0(X)$ in a function space with the sup-norm, we consider another norm on \tilde{A} induced by a linear operator L, namely,

$$\begin{aligned} \|(\mathfrak{a},\lambda)\| &= \|L_{(\mathfrak{a},\lambda)}\| \\ &= \sup_{\substack{x \in A \\ \|x\| \le 1}} \|\mathfrak{a}x + \lambda x\| \end{aligned}$$

Now, if we again consider the example where $A = C_0(X)$, but use the norm we just introduced, i.e.

$$\|(a,\lambda)\| = \sup_{\substack{f \in C_0(X) \\ \|f\|_{\infty} \le 1 \\ x \in X}} |a(x)f(x) + \lambda f(x)|$$

then indeed $||(a, \lambda)|| = ||a+\lambda 1||_{\infty}$. To see this, first note that we have $||(a, \lambda)|| \le ||a+\lambda 1||_{\infty}$. Then, to show that $||(a, \lambda)|| \ge ||a+\lambda 1||_{\infty}$, the idea is to use Urysohn's Lemma for locally compact hausdorff spaces to construct a specific function $f \in C_0(X)$ with $||f||_{\infty} \le 1$ that will establish the lower bound. iii) Problem: Is à with this norm complete?

Warm up:

1.6 Lemma. Let Φ be a linear functional on a normed space. Then, Φ is bounded if and only if $\Phi^{-1}(\{0\})$ is closed.

Proof. If Φ is bounded, then by continuity $\Phi^{-1}(\{0\})$ is closed. To prove the converse, we will show that if Φ is not bounded then $\Phi^{-1}(\{0\})$ is not closed. Suppose that Φ is unbounded, then there exists a sequence (x_n) in A such that for each $n \in \mathbb{N}$ we have that $||x_n|| \leq 1$ and $|\Phi(x_n)| \to \infty$. Now, consider $a \in \ker \Phi$ and choose $y_n = a - \frac{x_n}{\Phi(x_n)} \Phi(a)$. Note, we can define y_n to ensure $\Phi(x_n) \neq 0$ since $|\Phi(x_n)| \to \infty$, there is only finitely many terms for which $\Phi(x_n) = 0$, so we can define a sequence which 'discards' these elements and still has the properties that $||x'_n|| \leq 1$ and $|\Phi(x'_n)| \to \infty$. Moreover, for each $n \in \mathbb{N}$ we have that $\Phi(y_n) = 0$, so $y_n \in \ker \Phi$. We also see that $y_n \to a$ by $|\Phi(x_n)| \to \infty$, but $a \notin \ker \Phi$. This shows $\Phi^{-1}(\{0\})$ is not closed. \Box

We are now ready to complete the recap of material from last time by showing the norm in iii is complete.

1.7 Proposition. Let A be a C^* -algebra without unit and \tilde{A} be equipped with the norm induced by L, then \tilde{A} is a Banach space.

Proof. Let $(a, \lambda) \in \tilde{A}$ and $\pi_2(a, \lambda) = (0, \lambda)$, then we have that

$$\pi_2^{-1}(\{(0,0)\}) = (A,0) \cong A.$$

It follows by the completeness of A that $\pi_2^{-1}(\{(0,0)\})$ is closed which implies that π_2 is a bounded linear map (it is essentially a bounded linear functional). Consequently, $\pi_1(a,\lambda) = (a,0)$ is bounded since

$$\pi_1(\mathfrak{a},\lambda) = (\mathfrak{a},\lambda) - \pi_2(\mathfrak{a},\lambda).$$

Suppose that $(a_n, \lambda_n) \in \tilde{A}$ is a Cauchy sequence. It follows from π_1 and π_2 being bounded linear maps that $\pi_1(a_n, \lambda_n)$ and $\pi_2(a_n, \lambda_n)$ are Cauchy. The completeness of $A \times \{0\}$ and $\{0\} \times \mathbb{C}$ implies that $a_n \to a$ and $\lambda_n \to \lambda$. Observe that,

$$\begin{aligned} \|L_{(b,\mu)}\| &= \|L_{(b,0)} + L_{(0,\mu)}\| \\ &\leq \|L_{(b,0)}\| + \|L_{(0,\mu)}\| \end{aligned}$$

Setting $b = a_n - a$ and $\mu = \lambda_n - \lambda$, we see that $L_{(a_n,\lambda_n)} \to L_{(a,\lambda)}$ in operator norm because by A and \mathbb{C} being C*-algebras, $\|L_a\| = \|a\|$ and $\|L_{(0,\mu)}\| = \|\mu\|$.

2 **Properties of the spectrum**

In the case of finite dimensional complex Hilbert spaces, we saw the spectrum is non-empty because the characteristic polynomial of a matrix has at least one root due to the Fundamental Theorem of algebra. Next, using a little complex analysis, we show that for $a \in A$, where A is a Banach algebra then $\sigma(a)$ is nonempty.

2.1 Theorem. Let A be a Banach algebra with 1 [with the convention that ||1|| = 1]. We have

(i) For $\|x\| < 1$, then 1 - x is invertible and $(1 - x)^{-1} = \sum_{n=0}^{\infty} x^n$. Moreover,

$$\|(1-x)^{-1}\| \le \frac{1}{1-\|x\|}$$

and

.

$$\|(1-x)^{-1}-1\| \leq \frac{\|x\|}{1-\|x\|}$$

- (ii) G(A) is an open subset of A. More precisely, for each $a \in G(A)$, if $r = \frac{1}{\|a^{-1}\|}$, then $B_r(a) \subset G(A)$. Also, G(A) is a group whose operations (multiplication and inverse) are continuous.
- (iii) For each $a \in A$, $\sigma(a)$ is a compact subset of \mathbb{C} , and $r(a) \leq ||a||$.
- (iv) The function

$$\begin{aligned} \mathsf{R}: \rho(\mathfrak{a}) &\to \mathsf{A} \\ \lambda &\mapsto (\mathfrak{a} - \lambda \mathbf{1})^{-1} \end{aligned}$$

is continuous and even analytic, i.e. for each $a \in A$, $\lambda_0 \in \rho(a)$, there is r > 0 such that for $\lambda \in B_r(\lambda_0)$,

$$R(\lambda) = \sum_{n=0}^{\infty} a_n(\lambda_0)(\lambda - \lambda_0)^n$$

with some sequence $(a_n(\lambda_0))$ in A such that this series converges in norm of A.

Proof. (i) The convergence of the (Neumann) series follows from

$$\begin{split} \sum_{n=0}^{\infty} \|x^n\| &\leq \sum_{n=0}^{\infty} \|x\|^n \\ &= \frac{1}{1-\|x\|} < \infty \end{split}$$

Let $y = \sum_{n=0}^{\infty} x^n$, then

$$y(1-x) = (1-x)y$$

= 1 + x + x² + x³ + \dots - (x + x² + x³ + \dots) = 1

So,

 $y = (1 - x)^{-1}$.

The norm of y is, by the above, bounded by

$$\|\mathbf{y}\| \le \frac{1}{1 - \|\mathbf{x}\|}.$$

The second norm estimate follows from

$$\begin{split} \|y - 1\| &= \|\sum_{n=1}^{\infty} x^n\| \le \|x\|\sum_{n=0}^{\infty} \|x\|^n\\ &= \frac{\|x\|}{1 - \|x\|}. \end{split}$$

(ii) Since A is submultiplicative, we get that $(a, b) \mapsto ab$ is continuous on $A \times A$. From part (i), we also see that $z \mapsto z^{-1}$ is continuous at 1, because if $x_n \to 0$ then $(1 - x_n)^{-1} \to 1$. The rest of the proof will be continued next time.