Lecture Notes from October 27, 2022

taken by Cristian Meraz

Last time

- Banach space clean up.
- Properties of the spectrum.

1.0.1 Warm-up (review)

We start by reviewing the Hahn-Banach theorem, a powerful theorem which allows us to easily compute with vectors via their "coordinates" (see first-day handout).
1.6 Theorem (Hahn-Banach, complex version). Given a complex normed space X , and a subspace Y with a bounded linear functional $\mathrm{f}: \mathrm{Y} \rightarrow \mathbb{C}$ such that $\|\mathrm{f}\|=\mathrm{M}$, there exists a linear functional $\mathrm{g}: \mathrm{X} \rightarrow \mathbb{C}$ such that $\left.\mathrm{g}\right|_{\mathrm{Y}}=\mathrm{f}$ and $\|\mathrm{g}\|=\mathrm{M}$.
1.7 Remark. Note that although Banach is in the name of the theorem, it has nothing to do with Banach spaces or Banach algebras. In fact X need not be a normed space; it may have only a seminorm, or, simply a function $p: X \rightarrow \mathbb{R}$ satisfying

- $p(x+y) \leq p(x)+p(y)$ for all $x, y \in X$, and
- $p(\alpha x)=\alpha p(x)$ for all $x \in X$ and $\alpha \in \mathbb{R}^{+}$.

An important consequence is that the set of bounded linear functionals on a Banach algebra distinguishes between any two elements in the space.
1.8 Corollary. If A is a Banach algebra and $a, b \in A, a \neq b$, then there exists a bounded linear functional $\mathrm{g}: A \rightarrow \mathbb{C}$ such that $\mathrm{g}(\mathrm{a}) \neq \mathrm{g}(\mathrm{b})$.

Proof. Consider the subspace generated by $a-b, Y=\mathbb{C}(a-b)$. Let $f: Y \rightarrow \mathbb{C}$ be linear with

$$
f(a-b)=\|a-b\| .
$$

So we have

$$
\|f\|=\sup _{\|a-b\| \leq 1}|f(a-b)|=\sup _{\|a-b\| \leq 1}\|a-b\|=1
$$

By Hahn-Banach theorem, we know that there exists $\mathrm{g}: \mathrm{X} \rightarrow \mathbb{C}$ such that

$$
g(a-b)=\|a-b\| \neq 0 \quad \Rightarrow \quad g(a) \neq g(b)
$$

The next important result is a consequence of the Baire category theorem. Note that in the following, we can use the terms 'nonmeager' or of 'second-category' to describe a subset $\mathrm{B} \subset \mathrm{X}$ that is not a countable union of nowhere dense sets of X.
1.9 Theorem (Uniform boundedness or Banach-Steinhaus Theorem). Let X be a Banach space, B a set that is not a countable union of nowhere dense sets in X, and Γ a collection of bounded linear functionals. Suppose for any $x \in B,\{\Lambda x: \Lambda \in \Gamma\}$ is bounded. Then T is uniformly bounded, namely,

$$
\sup _{\Lambda \in \Gamma}\|\Lambda\|<\infty
$$

We prove the following special case.
1.10 Corollary. If A is a Banach algebra, and $\left(a_{n}\right)_{n \in \mathbb{N}}$ a sequence such that for any $f \in A^{\prime}$, $\left(f\left(a_{n}\right)\right)_{n \in \mathbb{N}}$ is bounded, then

$$
\sup _{n \in \mathbb{N}}\left\|a_{n}\right\|<\infty
$$

- This is another example of using a property that holds for the coordinates to show it holds for the entire space.
- Here we are saying that "weak boundedness" of the sequence implies boundedness of the sequence; this does not hold when we are talking about convergence because weak convergence does not imply strong.

Proof. By Hahn-Banach, we know that for each $a \in A$, there exists an $f \in A^{\prime}$ such that $f(a)=\|a\|$ and $\|f\|=1$. We can see how a acts on the f 's by writing

$$
\|a\|=\sup _{\|f\| \leq 1}|f(a)| .
$$

In particular if we define

$$
i: A \rightarrow\left(A^{\prime}\right)^{\prime}, \quad \underbrace{a \mapsto(f \mapsto f(a))}_{\text {canonical embedding }},
$$

then we have

$$
\|i(a)\|=\|a\|,
$$

so i is an isometry. To see that the equality holds, note that the canonical embedding i maps a to a bounded linear functional $\mathfrak{i}(a)(\cdot)$ on A^{\prime}, which then takes a bounded linear functional f on A to its point evaluation $\mathfrak{i}(a)(f)=f(a) \in \mathbb{C}$. Now when we write the norm

$$
\|i(a)\|=\sup _{\|f\| \leq 1}|i(a)(f)|=\sup _{\|f\| \leq 1}|f(a)|,
$$

this is the equality we have coming from Hahn-Banach.
Moreover, if we assume that $\left(f\left(a_{n}\right)\right)_{n \in \mathbb{N}}=\left(\mathfrak{i}\left(a_{n}\right)(f)\right)_{n \in \mathbb{N}}$ stays bounded for each $f \in A^{\prime}$, then since A^{\prime} is a Banach space, by uniform boundedness we have

$$
\sup _{n \in \mathbb{N}}\left\|i\left(a_{n}\right)\right\|=\sup _{n \in \mathbb{N}}\left\|a_{n}\right\|<\infty .
$$

1.0.2 Back to proof from last time

We were proving the following theorem:
1.11 Theorem. Let A be a Banach algebra with unit 1 and $\|1\|=1$. We have:
(i) For $\|x\|<1$, the element $1-x$ is invertible, and

$$
(1-x)^{-1}=\sum_{n=0}^{\infty} x^{n}
$$

Moreover,

$$
\left\|(1-x)^{-1}\right\| \leq \frac{1}{1-\|x\|}
$$

and

$$
\left\|(1-x)^{-1}-1\right\| \leq \frac{\|x\|}{1-\|x\|}
$$

(ii) $G(A)$ is an open subset of A. More precisely, for each $a \in G(A)$, if $r=\left\|a^{-1}\right\|^{-1}$, then

$$
\mathrm{B}_{\mathrm{r}}(\mathrm{a}) \subset \mathrm{G}(A) .
$$

Also, $\mathrm{G}(\mathrm{A})$ is a group whose operations (multiplication and inversion) are continuous.
(iii) For each $\mathrm{a} \in A, \sigma(\mathrm{a})$ is a compact subset of \mathbb{C} and $\mathrm{r}(\mathrm{a}) \leq\|\mathrm{a}\|$.
(iv) The function

$$
R: \rho(A) \rightarrow A, \quad \lambda \mapsto(a-\lambda 1)^{-1}
$$

is continuous and even analytic, that is, for each $a \in A, \lambda_{0} \in \rho(a)$, there is $r>0$ such that for $\lambda \in \mathrm{B}_{\mathrm{r}}\left(\lambda_{0}\right)$,

$$
R(\lambda)=\sum_{n=0}^{\infty} a_{n}\left(\lambda_{0}\right)\left(\lambda-\lambda_{0}\right)^{n}
$$

with some sequence $\left(a_{n}\left(\lambda_{0}\right)\right)$ in A such that the series converges in the norm of A.
Proof of (ii). Let $a \in G(A)$, and assume $\|x\|<\left\|a^{-1}\right\|^{-1}$. Then $a-x=a\left(1-a^{-1} x\right)$ and thus

$$
\left\|\mathrm{a}^{-1} \mathrm{x}\right\| \leq\left\|\mathrm{a}^{-1}\right\|\|x\|<1
$$

From (i), the element $1-a^{-1} x \in G(A)$, and since $a \in G(A)$, we have

$$
a\left(1-a^{-1} x\right)=a-x \in G(A)
$$

This works for any such x, so the claim follows. To see this, let $y \in B_{r}(a) \equiv\{z \in A:\|z-a\|<r\}$ with $r=\left\|a^{-1}\right\|^{-1}$. Then defining $x=a-y$ gives

$$
\|x\|<\left\|a^{-1}\right\|^{-1}
$$

and thus

$$
y=a-x \in G(A)
$$

To understand that $G(A)$ is a topological group, we need to show continuity of the group operations: the product and the inversion. We already showed continuity of the product in A, hence this also holds for the subset $G(A)$. We need to show continuity of the inversion.

To this end, let $a \in G(A)$ and $\|x\|<\left\|a^{-1}\right\|^{-1}$. Then $a-x \in G(A)$ and

$$
(a-x)^{-1}=\left(1-a^{-1} x\right) a^{-1} .
$$

We know that the right-hand side is (sequentially) continuous at $x=0$, and so is the left-hand side. Thus $a \mapsto a^{-1}$ is a continuous map at each $a \in G(A)$.

Proof of (iii). We know that $R: \rho(a) \rightarrow A, \lambda \mapsto(a-\lambda 1)^{-1}$ is continuous at $\lambda \in \rho(a)$ by (ii), so $\rho(a)$ is open and hence $\sigma(a)$ is closed. For $|\lambda|>\|a\|$, we get

$$
\lambda 1-a=\lambda\left(1-\lambda^{-1} a\right)
$$

and thus

$$
\left\|\lambda^{-1} a\right\|=\frac{\|a\|}{|\lambda|}<1 .
$$

From (i), we have

$$
1-\lambda^{-1} a \in G(A)
$$

so also

$$
\lambda\left(1-\lambda^{-1} a\right)=\lambda 1-a \in G(A),
$$

meaning $\lambda \in \rho(a)$. We have shown that $\lambda \in \mathbb{C}$ with the property $|\lambda|>\|a\|$ implies $\lambda \in \rho(a) ;$ in symbols,

$$
\{\lambda \in \mathbb{C}:\|\lambda \mid>\| a \|\} \subset \rho(a) .
$$

Then taking complements we have

$$
\sigma(a) \subset\{\lambda \in \mathbb{C}:|\lambda| \leq\|a\|\}
$$

and this implies

$$
r(a) \equiv \sup _{\lambda \in \sigma(a)}|\lambda| \leq\|a\| .
$$

Hence we see that $\sigma(a)$ is bounded in \mathbb{C}. By closedness, $\sigma(a)$ is compact.
Proof of (iv). Let $\lambda_{0} \in \rho(a), r=\left\|R\left(\lambda_{0}\right)\right\|^{-1}$. For $\left|\lambda-\lambda_{0}\right|<r$, we get $\lambda \in \rho(A)$ from (ii). The proof of (ii) gives an expression for $R(\lambda)$

$$
\begin{aligned}
R(\lambda) & =(\lambda 1-a)^{-1} \\
& =(\underbrace{\left(\lambda_{0} 1-a\right)}_{A}-\underbrace{\left(\lambda_{0}-\lambda\right) 1}_{X})^{-1} \\
& =\underbrace{\left(1-R\left(\lambda_{0}\right)\left(\lambda_{0}-\lambda\right)\right)^{-1}}_{\left(1-A^{-1} X\right)^{-1}} \underbrace{R\left(\lambda_{0}\right)}_{A^{-1}} .
\end{aligned}
$$

(Note we use the uppercase A to highlight the similarities between what we have here and when we considered $(a-x)^{-1}$. Not to be confused with the name of the Banach algebra.) We obtain the Neumann series

$$
\begin{aligned}
R(\lambda) & =\left(\sum_{n=0}^{\infty} R\left(\lambda_{0}\right)^{n}\left(\lambda_{0}-\lambda\right)\right) R\left(\lambda_{0}\right) \\
& =\sum_{n=0}^{\infty} R\left(\lambda_{0}\right)^{n+1}(-1)^{n}\left(\lambda-\lambda_{0}\right)^{n}
\end{aligned}
$$

and the series converges using

$$
\left\|R\left(\lambda_{0}\right)\left(\lambda-\lambda_{0}\right)\right\|=\left|\lambda-\lambda_{0}\right|\left\|R\left(\lambda_{0}\right)\right\|<1 .
$$

So, we have shown (iv).
It remains to show that the spectrum is nonempty to finish elementary properties.

