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Last time

• Banach space clean up.

• Properties of the spectrum.

1.0.1 Warm-up (review)

We start by reviewing the Hahn-Banach theorem, a powerful theorem which allows us to easily
compute with vectors via their “coordinates” (see first-day handout).

1.6 Theorem (Hahn-Banach, complex version). Given a complex normed space X, and a sub-
space Y with a bounded linear functional f : Y → C such that ∥f∥ = M, there exists a linear
functional g : X → C such that g|Y = f and ∥g∥ = M.

1.7 Remark. Note that although Banach is in the name of the theorem, it has nothing to do with
Banach spaces or Banach algebras. In fact X need not be a normed space; it may have only a
seminorm, or, simply a function p : X → R satisfying

• p(x+ y) ≤ p(x) + p(y) for all x, y ∈ X, and

• p(αx) = αp(x) for all x ∈ X and α ∈ R+.

An important consequence is that the set of bounded linear functionals on a Banach algebra
distinguishes between any two elements in the space.

1.8 Corollary. If A is a Banach algebra and a, b ∈ A, a ̸= b, then there exists a bounded linear
functional g : A → C such that g(a) ̸= g(b).

Proof. Consider the subspace generated by a− b, Y = C(a− b). Let f : Y → C be linear with

f(a− b) = ∥a− b∥.

So we have
∥f∥ = sup

∥a−b∥≤1

|f(a− b)| = sup
∥a−b∥≤1

∥a− b∥ = 1.

By Hahn-Banach theorem, we know that there exists g : X → C such that

g(a− b) = ∥a− b∥ ≠ 0 ⇒ g(a) ̸= g(b).
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The next important result is a consequence of the Baire category theorem. Note that in the
following, we can use the terms “nonmeager” or of “second-category” to describe a subset B ⊂ X

that is not a countable union of nowhere dense sets of X.

1.9 Theorem (Uniform boundedness or Banach-Steinhaus Theorem). Let X be a Banach space,
B a set that is not a countable union of nowhere dense sets in X, and Γ a collection of bounded
linear functionals. Suppose for any x ∈ B, {Λx : Λ ∈ Γ } is bounded. Then T is uniformly
bounded, namely,

sup
Λ∈Γ

∥Λ∥ < ∞.

We prove the following special case.

1.10 Corollary. If A is a Banach algebra, and (an)n∈N a sequence such that for any f ∈ A ′,
(f(an))n∈N is bounded, then

sup
n∈N

∥an∥ < ∞.

• This is another example of using a property that holds for the coordinates to show it holds
for the entire space.

• Here we are saying that “weak boundedness” of the sequence implies boundedness of
the sequence; this does not hold when we are talking about convergence because weak
convergence does not imply strong.

Proof. By Hahn-Banach, we know that for each a ∈ A, there exists an f ∈ A ′ such that
f(a) = ∥a∥ and ∥f∥ = 1. We can see how a acts on the f’s by writing

∥a∥ = sup
∥f∥≤1

|f(a)|.

In particular if we define
i : A → (A ′) ′, a 7→ (f 7→ f(a))︸ ︷︷ ︸

canonical embedding

,

then we have
∥i(a)∥ = ∥a∥,

so i is an isometry. To see that the equality holds, note that the canonical embedding i maps a
to a bounded linear functional i(a)(·) on A ′, which then takes a bounded linear functional f on
A to its point evaluation i(a)(f) = f(a) ∈ C. Now when we write the norm

∥i(a)∥ = sup
∥f∥≤1

|i(a)(f)| = sup
∥f∥≤1

|f(a)|,

this is the equality we have coming from Hahn-Banach.
Moreover, if we assume that (f(an))n∈N = (i(an)(f))n∈N stays bounded for each f ∈ A ′,

then since A ′ is a Banach space, by uniform boundedness we have

sup
n∈N

∥i(an)∥ = sup
n∈N

∥an∥ < ∞.
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1.0.2 Back to proof from last time

We were proving the following theorem:

1.11 Theorem. Let A be a Banach algebra with unit 1 and ∥1∥ = 1. We have:

(i) For ∥x∥ < 1, the element 1− x is invertible, and

(1− x)−1 =

∞∑
n=0

xn.

Moreover,

∥(1− x)−1∥ ≤ 1

1− ∥x∥
and

∥(1− x)−1 − 1∥ ≤ ∥x∥
1− ∥x∥

.

(ii) G(A) is an open subset of A. More precisely, for each a ∈ G(A), if r = ∥a−1∥−1, then

Br(a) ⊂ G(A).

Also, G(A) is a group whose operations (multiplication and inversion) are continuous.

(iii) For each a ∈ A, σ(a) is a compact subset of C and r(a) ≤ ∥a∥.

(iv) The function
R : ρ(A) → A, λ 7→ (a− λ1)−1,

is continuous and even analytic, that is, for each a ∈ A, λ0 ∈ ρ(a) , there is r > 0 such
that for λ ∈ Br(λ0),

R(λ) =

∞∑
n=0

an(λ0)(λ− λ0)
n,

with some sequence (an(λ0)) in A such that the series converges in the norm of A.

Proof of (ii). Let a ∈ G(A), and assume ∥x∥ < ∥a−1∥−1. Then a− x = a(1− a−1x) and thus

∥a−1x∥ ≤ ∥a−1∥∥x∥ < 1.

From (i), the element 1− a−1x ∈ G(A), and since a ∈ G(A), we have

a(1− a−1x) = a− x ∈ G(A).

This works for any such x, so the claim follows. To see this, let y ∈ Br(a) ≡ {z ∈ A : ∥z−a∥ < r}

with r = ∥a−1∥−1. Then defining x = a− y gives

∥x∥ < ∥a−1∥−1,

and thus
y = a− x ∈ G(A).
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To understand that G(A) is a topological group, we need to show continuity of the group
operations: the product and the inversion. We already showed continuity of the product in A,
hence this also holds for the subset G(A). We need to show continuity of the inversion.

To this end, let a ∈ G(A) and ∥x∥ < ∥a−1∥−1. Then a− x ∈ G(A) and

(a− x)−1 = (1− a−1x)a−1.

We know that the right-hand side is (sequentially) continuous at x = 0, and so is the left-hand
side. Thus a 7→ a−1 is a continuous map at each a ∈ G(A).

Proof of (iii). We know that R : ρ(a) → A, λ 7→ (a − λ1)−1 is continuous at λ ∈ ρ(a) by (ii),
so ρ(a) is open and hence σ(a) is closed. For |λ| > ∥a∥, we get

λ1− a = λ(1− λ−1a)

and thus

∥λ−1a∥ =
∥a∥
|λ|

< 1.

From (i), we have
1− λ−1a ∈ G(A),

so also
λ(1− λ−1a) = λ1− a ∈ G(A),

meaning λ ∈ ρ(a). We have shown that λ ∈ C with the property |λ| > ∥a∥ implies λ ∈ ρ(a); in
symbols,

{λ ∈ C : ∥λ| > ∥a∥} ⊂ ρ(a).

Then taking complements we have

σ(a) ⊂ {λ ∈ C : |λ| ≤ ∥a∥},

and this implies
r(a) ≡ sup

λ∈σ(a)
|λ| ≤ ∥a∥.

Hence we see that σ(a) is bounded in C. By closedness, σ(a) is compact.

Proof of (iv). Let λ0 ∈ ρ(a), r = ∥R(λ0)∥−1. For |λ− λ0| < r, we get λ ∈ ρ(A) from (ii). The
proof of (ii) gives an expression for R(λ)

R(λ) = (λ1− a)−1

= ((λ01− a)︸ ︷︷ ︸
A

−(λ0 − λ)1︸ ︷︷ ︸
X

)−1

= (1− R(λ0)(λ0 − λ))−1︸ ︷︷ ︸
(1−A−1X)−1

R(λ0)︸ ︷︷ ︸
A−1

.

4



(Note we use the uppercase A to highlight the similarities between what we have here and when
we considered (a− x)−1. Not to be confused with the name of the Banach algebra.) We obtain
the Neumann series

R(λ) =

( ∞∑
n=0

R(λ0)
n(λ0 − λ)

)
R(λ0)

=

∞∑
n=0

R(λ0)
n+1(−1)n(λ− λ0)

n

and the series converges using

∥R(λ0)(λ− λ0)∥ = |λ− λ0|∥R(λ0)∥ < 1.

So, we have shown (iv).

It remains to show that the spectrum is nonempty to finish elementary properties.
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