Lecture Notes from October 27, 2022

taken by Jessica McKim

Last time

- Banach space clean-up
- Properties of the spectrum

Warm up:

1.2 Theorem. Hahn-Banach, Complex Version

Given a complex normed space X , and a subspace Y with a bounded linear functional $\mathrm{f}: \mathrm{Y} \mapsto \mathbb{C}$ such that $\|\mathrm{f}\|=\mathrm{M}$ then there is a linear functional $\mathrm{g}: \mathrm{X} \mapsto \mathbb{C}$ such that $\left.\mathrm{g}\right|_{\mathrm{y}}=\mathrm{f}$ and $\|\mathrm{g}\|=\mathrm{M}$
1.3 Corollary. If A is a Banach algebra and $a, b \in A, a \neq b$ then there is a bounded linear functional $\mathrm{g}: \mathrm{A} \mapsto \mathbb{C}$ such that $\mathrm{g}(\mathrm{a}) \neq \mathrm{g}(\mathrm{b})$

Proof. Consider $Y=\mathbb{C}(a-b)$, let $f: Y \mapsto \mathbb{C}$ be linear with $f(a, b)=\|a-b\|$ so $\|f\|=1$, by Hahn-Banach we get $g: A \mapsto \mathbb{C}, g$ bounded such that the $g(a-b)=\|a-b\| \neq 0$ so $g(a)-g(b)=\|a-b\|$

1.4 Theorem. Uniform Boundedness

Let X be a Banach Space, B be a set that is not a countable union of nowhere dense sets in X, and Γ a collection of bounded linear functionals, and for any $x \in B,\{\Lambda x: \Lambda \in \Gamma\}$ is bounded, then Γ is uniformly bounded, ie

$$
\sup _{\Lambda \in \Gamma}\|\Lambda\|<\infty
$$

1.5 Corollary. If A is a Banach algebra, and $\left(a_{n}\right)$ a sequence such that for any $f \in A^{\prime},\left(f\left(a_{n}\right)\right)_{n \in \mathbb{N}}$ is bounded, then $\sup _{\mathrm{n} \in \mathbb{N}<\infty}$

Proof. By Hahn-Banach, we know that for each $a \in A$ there is $f \in A^{\prime},\|f\|=1, f(a)=\|a\|$ Hence, $\|a\|=\sup _{\|f\| \leq 1} \mid f(a)$ We define

$$
\begin{gathered}
i: A \mapsto\left(A^{\prime}\right)^{\prime} \\
a \mapsto(f \mapsto f(a))
\end{gathered}
$$

then $\|i(a)\|=\|a\|$, so i is an isometry.
Moreover, $i\left(a_{n}\right)(f)=f\left(a_{n}\right)$ and if we assume that $\left(f\left(a_{n}\right)\right)$ stays bounded for each $f \in A^{\prime}, A^{\prime}$ Banach, then by uniform boundedness, $\sup _{n}\left\|i\left(a_{n}\right)\right\|=\sup _{n}\left\|a_{n}\right\|<\infty$

Now let's recall the properties of the spectrum from last time and finish proving them.
Proof. i This property was proved in the last class
ii Let $a \in G(A),\|x\|<\left\|a^{-1}\right\|^{-1}$, then $a-x=a\left(1-a^{-1} x\right)$ and $\left\|a^{-1} x\right\| \leq\left\|a^{-1}\right\|\|x\|<1$ from (i) we have have $1-a^{-1} x \in G(A)$ and from $a \in G(A), a\left(1-a^{-1} x\right)=a-x \in G(A)$. This works for any such x, so the claim follows because if $y \in B_{r}(a)$, with $r=\left\|a^{-1}\right\|^{-1}$ then defining $x=a-y$ gives $\|x\|<\left\|a^{-1}\right\|^{-1}$ and $y=a-x \in G(A)$
To understand that $G(A)$ is a topological group, we need to show continuity of the group operations. We already showed continuity of the product in A, hence this also holds for the subset $G(A)$. Now, we need to continuity of the inversion.
Let $a \in G(A),\|x\|<\left\|a^{-1}\right\|^{-1}$, then $a-x \in G(A)$ and $(a-x)^{-1}=\left(1-a^{-1} x\right)^{-1} a^{-1}$
We know the right hand side is continuous at $x=0$ and so is the left hand side and thus $a \mapsto a^{-1}$ is continuous at each $a \in G(A)$
iii We have that

$$
\begin{gathered}
R: \rho(a) \mapsto A \\
\lambda \mapsto(a-\lambda 1)^{-1}
\end{gathered}
$$

is continuous at $\lambda \in \rho(a)$ by (ii), so $\sigma(a)$ is closed.
For $\lambda>\|a\|$, we get $\lambda 1-a=\lambda\left(1-\lambda^{-1} a\right)$ and thus $\left\|\lambda^{-1} a\right\|=\frac{\|a\|}{|\lambda|}<1$
From (i), we have $1-\lambda^{-1} a \in G(A)$, so also $\lambda 1-a \in G(A)$, meaning $\lambda \in \rho(a)$.
This implies that $r(a) \leq\|a\|$ and we $\sigma(a)$ is bounded in \mathbb{C}. By closeness, $\sigma(a)$ is compact.
iv Let $\lambda_{0} \in \rho(a), r=\left\|R\left(\lambda_{0}\right)\right\|^{-1}$, for $\left|\lambda-\lambda_{0}\right|<r$ we get $\lambda \in \rho(a)$ from (ii) The proof of (ii) gives us an expression for $R(\lambda)$,

$$
\begin{gathered}
R(\lambda)=(\lambda 1-a)^{-1}=(\underbrace{\left(\lambda_{0} 1-a\right.}_{A})-\underbrace{\left(\lambda_{0}-\lambda\right)}_{x})^{-1} \\
=\overbrace{\left(1-R\left(\lambda_{0}\right)\left(\lambda_{0}-\lambda\right)\right)^{-1}}^{(\overbrace{R\left(\lambda_{0}\right)}^{A^{-1}}} \\
=\left(\sum_{n=0}^{\infty} R\left(\lambda_{0}\right)^{n}\left(\lambda_{0}-\lambda\right)^{n}\right) R\left(\lambda_{0}\right)=\sum_{n=0}^{\infty} R\left(\lambda_{0}\right)^{n=1}(-1)^{n}\left(\lambda_{0}-\lambda\right)^{n}
\end{gathered}
$$

and the series converges using $\| R\left(\lambda_{0}\right)\left(\lambda-\lambda_{0}\left\|=\mid \lambda-\lambda_{0}\right\| R\left(\lambda_{0}\right) \|<1\right.$ and so we have shown (iv)

