Lecture Notes from November 1, 2022

taken by Caleb Barnett

Last Time

- Hahn Banach over $\mathbb C$
- Uniform Boundedness
- Properties of the spectrum

Warm up:

Given $f:\mathbb{D}\to\mathbb{C}$, f analytic on $\mathbb{D},\ \overline{B}_1(0)\subset\mathbb{D},\ \mathbb{D}$ open, then f has a uniformly convergent power series on $\overline{B}_r(0)$ for any r<1 given by

$$f(z) = \sum_{n=0}^{\infty} \frac{1}{2\pi} \int_{0}^{2\pi} f(e^{it}) e^{-itn} dt z^{n}.$$

First, we want to show the series converges. On $\overline{B}_r(0)$, f is by assumption continuous, hence bounded since $\overline{B}_1(0)$ is compact.

Consequently,

$$c_n = \frac{1}{2\pi} \int_0^{2\pi} f(e^{it}) e^{-itn} dt$$

satisfies

$$\begin{split} |c_{n}| &\leq \frac{1}{2\pi} \int_{0}^{2\pi} |f(e^{it})e^{-itn}| \, dt \\ &\leq \frac{1}{2\pi} \int_{0}^{2\pi} |f(e^{it})| |e^{-it\pi}| \, dt \\ &\leq \frac{1}{2\pi} \int_{0}^{2\pi} |f(e^{it})| \, dt \leq \|f\|_{\infty}. \end{split}$$
 (by Hölder)

Since $z \in \overline{\mathrm{B}}_{\mathrm{r}}(0)$, $|z| \leq \mathrm{r} < 1$. Hence, by Hölder again,

$$\sum_{n=0}^{\infty} |c_n z^n| \leq \sum_{n=0}^{\infty} |c_n||z|^n \leq \sum_{n=0}^{\infty} \|f\|_{\infty} r^n < \infty.$$

By the Weierstraß M-test, $\sum_{n=0}^{\infty}c_nz^n$ is uniformly convergent on $\overline{B}_r(0)$ for any r<1.

Next, since Fubini-Tonelli allows us to interchange integrals and sums, we observe

$$g(z) = \sum_{n=0}^{\infty} \frac{1}{2\pi} \int_{0}^{2\pi} f(e^{it}) e^{-itn} dt z^{n}$$

$$= \frac{1}{2\pi} \int_{0}^{2\pi} f(e^{it}) \sum_{n=0}^{\infty} e^{-itn} dt z^{n}$$

$$= \frac{1}{2\pi} \int_{0}^{2\pi} f(e^{it}) \sum_{n=0}^{\infty} e^{-itn} z^{n} dt$$
 (Geometric Series)

$$= \frac{1}{2\pi} \int_{0}^{2\pi} f(e^{it}) \frac{1}{1 - e^{-it}z} dt.$$

We have that g is analytic (as g is a uniformly convergent limit of polynomials) on each $\overline{B}_r(0)$, r < 1. Also note that for r = 1, we get the Fourier series of $f(e^{it})$, which is convergent in L². Using Dominated Convergence of Fourier coefficients in l², i.e.

$$\hat{g}_r(n) = r^n c_n$$

then $r \to 1$ gives $\widehat{g}_r \to (c_n)$ in $l^2.$ Consequently, as $r \to 1$,

$$g_r(e^{it}) = \sum_{n=0}^{\infty} \widehat{g}_r(n) e^{itn} \xrightarrow{L_2} f(e^{it})$$

We conclude, g is a power series converging to f in L^2 .

Preparing for Banach-Mazur

To deduce properties of the spectrum, we use complex analysis.

0.0 Theorem. Let 0 < r < R, $\Omega = \{z \in \mathbb{C} : r < |z| < R\}$ and $f : \Omega \to \mathbb{C}$ analytic, then f has a Laurent series

$$f(z) = \sum_{n \in \mathbb{Z}} a_n z^n$$

with uniform convergence on compact subsets of Ω .

And for any $r < \rho < R$,

$$a_n = \frac{1}{2\pi\rho} \int_0^{2\pi} f(\rho e^{it}) e^{-int} dt.$$

Proof. For simplicity, we assume f has a Laurent series expression¹, then we show a_n is given by this integral. By uniform convergence of series, we may integrate term-by-term,

$$\int_{0}^{2\pi} f(\rho e^{it}) e^{-int} dt = \int_{0}^{2\pi} \left(\sum_{m=-\infty}^{\infty} a_m (\rho e^{it})^m \right) e^{-int} dt$$
$$= \sum_{m=-\infty}^{\infty} \int_{0}^{2\pi} a_m \rho^m e^{i(m-n)t} dt$$
$$= \sum_{m=-\infty}^{\infty} a_m \rho^m \int_{0}^{2\pi} e^{i(m-n)t} dt$$
$$= a_n \rho^n \int_{0}^{2\pi} e^{i(0)t} dt \qquad (m \neq n \implies \int_{0}^{2\pi} e^{i(m-n)t} = 0)$$
$$= 2\pi a_n \rho^n$$

Diving by $2\pi\rho^n$ gives the claimed expression.

As a consequence, we get Liouville's theorem.

0.1 Theorem. Let $f : \mathbb{C} \setminus \{0\} \to \mathbb{C}$ be bounded and analytic. Then f is constant. Proof. For $\rho \in (0, \infty)$, we get

$$f(z) = \sum_{m=-\infty}^{\infty} a_n z^n$$

with $a_n = \frac{1}{2\pi\rho^n} \int_0^{2\pi} f(\rho e^{it}) e^{-int} dt$. Then since $\|f\|_{\infty} = \sup_{z \in \mathbb{C} \setminus \{0\}} |f(z)| < \infty$,

$$\begin{split} |\mathfrak{a}_{\mathfrak{n}}| &\leq \frac{1}{2\pi\rho^{\mathfrak{n}}} \int_{0}^{2\pi} \|f\|_{\infty} |e^{-i\mathfrak{n}t}| dt \\ &\leq \frac{\|f\|_{\infty}}{\rho^{\mathfrak{n}}}. \end{split}$$

If n < 0, letting $\rho \to 0$ shows $a_n = 0$. If n > 0, $\rho \to \infty$ gives $a_n = 0$. Therefore $f(z) = a_0$, so f is constant.

¹To see why analytic functions on an annulus have a Laurent series expression, see Chapter 5 Section 1.1.3: The Laurent Series in *Complex Analysis* by Lars Ahlfors (Third Edition).

We need one more lemma to prepare the main result on the spectrum.

0.2 Lemma. Let $(a_n)_{n\in\mathbb{N}}$ be a sequence in \mathbb{R}^+ with $0 \leq a_{n+m} \leq a_n a_m$. Then $(a_n^{\frac{1}{n}})_{n\in\mathbb{N}}$ converges to $\inf_{n\in\mathbb{N}} a_n^{\frac{1}{n}}$.

 $\begin{array}{l} \textit{Proof. Let } a = \inf_{n \in \mathbb{N}} a_n ^{\frac{1}{n}}. \mbox{ Choose } \varepsilon > 0. \mbox{ Then we can find } N \in \mathbb{N} \mbox{ such that } a_N ^{\frac{1}{N}} < a + \varepsilon. \\ \mbox{ Let } b = \max\{1, a_1, a_2, \ldots, a_{N-1}\} \mbox{ and write } n = kN + r \mbox{ with } r \in \{0, 1, 2, \ldots, N-1\}. \\ \mbox{ Then } \end{array}$

$$\begin{split} a_n^{\frac{1}{n}} &= a_{kN+r}^{\frac{1}{n}} \leq (a_N^k a_r)^{\frac{1}{n}} \leq (a+\varepsilon)^{\frac{kN}{n}} b^{\frac{1}{n}} \\ &= (a+\varepsilon)^{1-\frac{r}{n}} b^{\frac{1}{n}} \\ &= (a+\varepsilon)(a+\varepsilon)^{-\frac{r}{n}} b^{\frac{1}{n}} \end{split}$$

As $(a + \varepsilon)^{-\frac{r}{n}} \to 1$ and $b^{\frac{1}{n}} \to 1$ as $n \to \infty$, we have that by convergence of factors, for all sufficiently large n,

$$a_n^{\frac{1}{n}} \leq a + 2\epsilon.$$

Since ε was arbitrary, $a_n{}^{\frac{1}{n}} \to a.$