
Lecture Notes from November 1, 2022
taken by Caleb Barnett

Last Time

• Hahn Banach over C

• Uniform Boundedness

• Properties of the spectrum

Warm up:
Given f : D → C, f analytic on D, B1(0) ⊂ D, D open, then f has a uniformly convergent

power series on Br(0) for any r < 1 given by

f(z) =

∞∑
n=0

1

2π

∫ 2π

0

f(eit)e−itn dt zn.

First, we want to show the series converges. On Br(0), f is by assumption continuous, hence
bounded since B1(0) is compact.

Consequently,

cn =
1

2π

∫ 2π

0

f(eit)e−itn dt

satisfies

|cn| ≤
1

2π

∫ 2π

0

|f(eit)e−itn|dt

≤ 1

2π

∫ 2π

0

|f(eit)|��
��*

1
|e−itn|dt (by Hölder)

≤ 1

2π

∫ 2π

0

|f(eit)|dt ≤ ∥f∥∞.

Since z ∈ Br(0), |z| ≤ r < 1. Hence, by Hölder again,

∞∑
n=0

|cnz
n| ≤

∞∑
n=0

|cn||z|
n ≤

∞∑
n=0

∥f∥∞rn < ∞.

By the Weierstraβ M-test,
∑∞

n=0 cnz
n is uniformly convergent on Br(0) for any r < 1.
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Next, since Fubini-Tonelli allows us to interchange integrals and sums, we observe

g(z) =

∞∑
n=0

1

2π

∫ 2π

0

f(eit)e−itn dt zn

=
1

2π

∫ 2π

0

f(eit)

∞∑
n=0

e−itn dt zn

=
1

2π

∫ 2π

0

f(eit)

∞∑
n=0

e−itnzn dt (Geometric Series)

=
1

2π

∫ 2π

0

f(eit)
1

1− e−itz
dt.

We have that g is analytic (as g is a uniformly convergent limit of polynomials) on each
Br(0), r < 1. Also note that for r = 1, we get the Fourier series of f(eit), which is convergent
in L2. Using Dominated Convergence of Fourier coefficients in l2, i.e.

ĝr(n) = rncn

then r → 1 gives ĝr → (cn) in l2. Consequently, as r → 1,

gr(e
it) =

∞∑
n=0

ĝr(n) e
itn L2→ f(eit)

We conclude, g is a power series converging to f in L2.
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Preparing for Banach-Mazur

To deduce properties of the spectrum, we use complex analysis.

0.0 Theorem. Let 0 < r < R, Ω = {z ∈ C : r < |z| < R} and f : Ω → C analytic, then f has a
Laurent series

f(z) =
∑
n∈Z

anz
n

with uniform convergence on compact subsets of Ω.
And for any r < ρ < R,

an =
1

2πρ

∫ 2π

0

f(ρeit)e−int dt.

Proof. For simplicity, we assume f has a Laurent series expression1, then we show an is given by
this integral. By uniform convergence of series, we may integrate term-by-term,∫ 2π

0

f(ρeit)e−int dt =

∫ 2π

0

( ∞∑
m=−∞am(ρe

it)m

)
e−int dt

=

∞∑
m=−∞

∫ 2π

0

amρ
mei(m−n)t dt

=

∞∑
m=−∞amρ

m

∫ 2π

0

ei(m−n)t dt

= anρ
n

∫ 2π

0

ei(0)t dt (m ̸= n =⇒ ∫2π

0
ei(m−n)t = 0)

= 2πanρ
n

Diving by 2πρn gives the claimed expression.

As a consequence, we get Liouville’s theorem.

0.1 Theorem. Let f : C \ {0} → C be bounded and analytic. Then f is constant.

Proof. For ρ ∈ (0,∞), we get

f(z) =

∞∑
m=−∞anz

n

with an = 1
2πρn

∫2π

0
f(ρeit)e−int dt. Then since ∥f∥∞ = supz∈C\{0} |f(z)| < ∞,

|an| ≤
1

2πρn

∫ 2π

0

∥f∥∞����*
1

|e−int|dt

≤ ∥f∥∞
ρn

.

If n < 0, letting ρ → 0 shows an = 0. If n > 0, ρ → ∞ gives an = 0. Therefore f(z) = a0, so
f is constant.

1To see why analytic functions on an annulus have a Laurent series expression, see Chapter 5 Section 1.1.3:
The Laurent Series in Complex Analysis by Lars Ahlfors (Third Edition).
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We need one more lemma to prepare the main result on the spectrum.

0.2 Lemma. Let (an)n∈N be a sequence in R+ with 0 ≤ an+m ≤ anam. Then (an
1
n )n∈N

converges to infn∈N an
1
n .

Proof. Let a = infn∈N an
1
n . Choose ϵ > 0. Then we can find N ∈ N such that aN

1
N < a+ ϵ.

Let b = max{1, a1, a2, . . . , aN−1} and write n = kN+ r with r ∈ {0, 1, 2, . . . , N− 1}.
Then

an

1
n = akN+r

1
n ≤ (ak

Nar)
1
n ≤ (a+ ϵ)

kN
n b

1
n

= (a+ ϵ)1−
r
nb

1
n

= (a+ ϵ)(a+ ϵ)−
r
nb

1
n

As (a + ϵ)−
r
n → 1 and b

1
n → 1 as n → ∞, we have that by convergence of factors, for all

sufficiently large n,

an

1
n ≤ a+ 2ϵ.

Since ϵ was arbitrary, an
1
n → a.
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