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taken by  Lukasz Krzywon

Last time

• Hahn Banach Theorem over C

• Uniform Boundedness

• Properties of the Spectrum of an operator

Warm up:
Given an analytic function f : D → C for some domain D containing the closed unit disc

B1(0) we know from complex analysis that f has a uniformly convergent power series on Br(0)
for any 0 < r < 1. Recall the Cauchy Integral formula, (aka Cauchy’s Differentiation Formula
according to Wikipedia) for an analytic function on an open domain containing the origin,

f(n)(0) =
n!

2πi

∮
γ

f(ζ)

ζn+1
dζ,

where γ is any smooth closed curve in the domain that circles around the origin once. In our
case we can calculate the integral with the parametrization ζ = eit, so dζ = ieitdt Thus,

f(z) =

∞∑
n=0

f(n)(0)

n!
zn =

∞∑
n=0

(
1

2πi

∮
γ

f(ζ)

ζn+1
dζ)zn =

∞∑
n=0

(
1

2π

∫ 2π
0

f(eit)e−itndt)zn.

I think we are trying to prove that the series converges on the closed unit disc.
B1(0) is compact and f is continuous, so f is bounded on the closed unit disc. Consequently,

by Hlder, cn = 1
2π

∫2π
0
f(eit)e−itndt satisfy

|cn| ≤
1

2π

∫ 2π
0

|f(eit)|dt ≤ ||f(eit)||∞ =M.

For |z| ≤ r, we have |cnz
n| ≤ Mrn and since r < 1,

∑
Mrn converges. Hence,

∑
cnz

n

converges uniformly converges on Br(0) by the Weier-Strauss M test.
This implies we can interchange integral and summation so, for |z| ≤ r < 1,
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f(z) =

∞∑
n=0

1

2π

∫ 2π
0

f(eit)e−itndtzn

=
1

2π

∫ 2π
0

f(eit)

∞∑
n=0

e−itnzndt

=
1

2π

∫ 2π
0

f(e−it)

1− e−itz
dt,

where the sum converges since it is a geometric series for a fixed z.
Since we already assumed f is analytic, we have limr→1 f(reit) = f(eit). At this moment our

discussion seems tautological. Like we have only been going in circles (pun intended), but we
have already determined something. The assumption that f be analytic is too strong. We were
able to recover everything about f on B1(0) by only knowing the values of f on T. Even so, let
us see what we can determine if we only are given a continuous function, g, defined on T. The
Fourier coefficients of g are defined as above. That is, cn = 1

2π

∫2π
0
g(eit)e−itndt. We can define

a power series on T by
∑
cnz

n, where z ∈ T iff |z| = 1.
As we have already shown, continuity of g implies |cn| ≤ ||g(eit)||∞. Thus, for r < 1 as above,∑
cnz

n converges uniformly for z ∈ Br(0). Hence, we can differentiate term by term, so we have
“extended” g to an analytic function g̃ =

∑
cnz

n on Br(0). We still need to show g̃ converges
to g in some sense. In class we showed limr→1 g̃(reit) = g(eit) for almost every t ∈ [0, 2π] as
follows. For r = 1, g has a Fourier series that converges in L2(T). Hence, (cn) ∈ l2. Instead of
thinking of g being defined on the circles with radius less than one, consider a family of functions
gr : T → C defined by gr(e

it) =
∑
rncne

it. Now, using dominated convergence of the Fourier
coefficients in l2 we have limr→1 ĝr(n) = limr→1 rncn = cn. That is, (gr)n → (cn) in l2. Thus,
gr → g(eit) in L2. Therefore, limr→1 g(reit) = g(eit) for almost every t ∈ [0, 2π].

In fact, a stronger result is true, limr→1 g̃(reit) = g(eit) uniformly for all t ∈ [0, 2π]. This fol-
lows from Poisson’s Theorem, (Davidson and Donsig in their book Real Analysis and Applications:
Theory in Practice pg 341). In their proof, they use properties of the Poisson kernel

P(r, t) =
1

2π

1− r2

1− 2rcos(t) + r2
.

Their result is in terms of harmonic analysis where the function on T is real, however, the result
extends to complex functions by defining g(eit) = u(t) + iv(t) and applying Poisson’s Theorem
to u and v. It still remains to show that u and v are harmonic conjugates.

There are some more complex analysis theorems we will need to prove properties of the
spectrum.

1.6 Theorem. Let 0 < r < R, Ω = {z ∈ C : r < |z| < R} and f : Ω→ C be analytic. Then, f
has a Laurent series f(z) =

∑
n∈Z anz

n that converges uniformly on compact subsets of Ω and
for any r < ρ < R,

an =
1

ρn
1

2π

∫ 2π
0

f(ρeit)e−itndt.
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Proof. That an analytic function has a uniformly convergent Laurent series on compact subsets
of Ω can be seen immediately from the fact that f(z) has a Taylor series for |z| < R and f(1/z)
has a Taylor series for |z| > r. As with the warm-up let us use uniform convergence to integrate
term by term.

1

2π

∫ 2π
0

f(ρeit)e−itndt =
∑
m∈Z

amρ
m 1

2π

∫ 2π
0

ei(m−n)tdt

=
∑
m∈Z

amρ
mδmn = anρ

n,

giving the formula.

1.7 Corollary. (Louiville’s Theorem) Let f : C − {0} → C be bounded and analytic. Then f is
constant.

Proof. For ρ ∈ (0,∞) we have f(z) =
∑

n∈Z anz
n with

an =
1

ρn
1

2π

∫ 2π
0

f(ρeit)e−itndt.

Since f is bounded, ||f||∞ = supz 6=0 |f(z)| ≤M <∞. Thus, by Hlder,

|an| ≤
1

ρn
1

2π

∫ 2π
0

Mdt ≤ M
ρn
.

For n > 0 let ρ approach 0 and for n < 0 let ρ approach ∞. Therefore, an = 0 for all n 6= 0,
so f(z) = a0 for all z 6= 0.

We are still setting up the pieces to be used to prove the spectrum is nonempty.

1.8 Lemma. Let (an)n∈N be a sequence in R+ that satisfies 0 ≤ an+m ≤ anam. Then, (an)
1/n
n

converges to infn∈N a
1/n
n .

Proof. Let a = infn∈N a
1/n
n and let ε < 0. Hence, there exists N ∈ N such that a

1/N
N < a + ε.

Let b = max 1, a1, ..., aN−1 and let n = Nk+ r. Then,

a1/nn = a
1/n
Nk+r ≤ (akNar)

1/n

≤ (a+ ε)kN/nb1/n

= (a+ ε)1−r/nb1/n

= (a+ ε)((a+ ε)−r)1/nb1/n → a+ ε as n approaches ∞.
The limit evaluation on the last step follows from the fact c1/n converges to 1 for all c > 0 as n
approaches ∞. Since ε was arbitrary, we conclude a

1/n
n converges to a.
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