Lecture Notes from November 1, 2022

taken by tukasz Krzywon

Last time
e Hahn Banach Theorem over C
e Uniform Boundedness
e Properties of the Spectrum of an operator

Warm up:

Given an analytic function f : D — C for some domain D containing the closed unit disc
B1(0) we know from complex analysis that f has a uniformly convergent power series on B.(0)
for any 0 < r < 1. Recall the Cauchy Integral formula, (aka Cauchy's Differentiation Formula
according to Wikipedia) for an analytic function on an open domain containing the origin,
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where v is any smooth closed curve in the domain that circles around the origin once. In our
case we can calculate the integral with the parametrization ¢ = e't, so d( = ie'dt Thus,
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| think we are trying to prove that the series converges on the closed unit disc.
B1(0) is compact and f is continuous, so f is bounded on the closed unit disc. Consequently,

by Hider, ¢, = 5 J“é"f(e“)e*““dt satisfy
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For |z] < r, we have [c,z"| < Mr™ and since 7 < 1, > Mr™ converges. Hence, ) cnz"
converges uniformly converges on B,(0) by the Weier-Strauss M test.
This implies we can interchange integral and summation so, for |z] <1 < 1,
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where the sum converges since it is a geometric series for a fixed z.

Since we already assumed f is analytic, we have lim,_,; f(re't) = f(e'*). At this moment our
discussion seems tautological. Like we have only been going in circles (pun intended), but we
have already determined something. The assumption that f be analytic is too strong. We were
able to recover everything about f on B;(0) by only knowing the values of f on T. Even so, let
us see what we can determine if we only are given a contmuous functlon g, defined on T. The
Fourier coefficients of g are defined as above. That is, ¢, = fo Je~"dt. We can define
a power series on T by > c¢,z", where z € T iff |z| = 1.

As we have already shown, continuity of g implies |c,,| < ||g(e™)||oo. Thus, for r < 1 as above,
> cnz" converges uniformly for z € B,(0). Hence, we can differentiate term by term, so we have
“extended” g to an analytic function g = ) c,z" on B,(0). We still need to show § converges
to g in some sense. In class we showed lim,_,; g(re't) = g(e') for almost every t € [0,27] as
follows. For r =1, g has a Fourier series that converges in L*(T). Hence, (c,) € 1%. Instead of
thinking of g being defined on the circles with radius less than one, consider a family of functions
gr : T — C defined by g.(e't) = > r"c,e'. Now, using dominated convergence of the Fourier
coefficients in 12 we have lim,_,; §;(n) = lim,_,; T"c, = c,,. That is, (g;)n — (cn) in 12. Thus,
gr — g(e') in L2, Therefore, lim,_,; g(re™) = g(e't) for almost every t € [0, 27].

In fact, a stronger result is true, lim,_,; g(re*) = g(e') uniformly for all t € [0, 27t]. This fol-
lows from Poisson’s Theorem, (Davidson and Donsig in their book Real Analysis and Applications:
Theory in Practice pg 341). In their proof, they use properties of the Poisson kernel
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Their result is in terms of harmonic analysis where the function on T is real, however, the result
extends to complex functions by defining g(e't) = u(t) + iv(t) and applying Poisson’s Theorem
to u and v. It still remains to show that u and v are harmonic conjugates.

There are some more complex analysis theorems we will need to prove properties of the
spectrum.

1.6 Theorem. Let 0 <1 <R, Q={ze€ C:r<|z| <R} and f: Q — C be analytic. Then, f
has a Laurent series f(z) = ) ., anz" that converges uniformly on compact subsets of Q) and
for any r < p <R,
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Proof. That an analytic function has a uniformly convergent Laurent series on compact subsets
of O can be seen immediately from the fact that f(z) has a Taylor series for |z| < R and f(1/z)
has a Taylor series for |z| > r. As with the warm-up let us use uniform convergence to integrate
term by term.
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giving the formula. [l

1.7 Corollary. (Louiville's Theorem) Let f: C —{0} — C be bounded and analytic. Then f is
constant.

Proof. For p € (0,00) we have f(z) =) _, a,z" with
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Since f is bounded, ||f|loc = sup, [f(z)] <M < oo. Thus, by Hider,
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For n > 0 let p approach 0 and for n < O let p approach co. Therefore, a, = 0 for all n # 0,
so f(z) = ao for all z # 0. O

We are still setting up the pieces to be used to prove the spectrum is nonempty.

1.8 Lemma. Let (a,)nen be a sequence in R™ that satisfies 0 < anim < anQm. Then, (an)ll/n
converges to infyey an' ™.

Proof. Let a = inf,cy a:l/n and let € < 0. Hence, there exists N € N such that a:\J/N < a-+e.

Let b =max1,a;,...,an_7 and let n = Nk + r. Then,
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The limit evaluation on the last step follows from the fact ¢'/™ converges to 1 for allc >0 asn
1/

approaches oco. Since € was arbitrary, we conclude a,/" converges to a. O



