Lecture Notes from November 3, 2022

taken by Alina Rajbhandari

Last Time

- Fourier Series VS Power Series for analytic functions
- Liouville's Theorem
- Asymptotic rate of growth for sequences

Warm up:

For $0 \le a_{n+m} \le a_n a_m$, then $a_n^{\frac{1}{n}} \to \inf_n a_n^{\frac{1}{n}}$. Suppose that the equality holds, i.e, $a_{n+m} = a_n a_m$, then what do I know about a's?

Then a: $\mathbb{N} \to \mathbb{R}^+$ is semi-group homomorphism. All of this is just determined by a_1 and $a_n = a_1^n$.

This is precisely an exponential growth.

- So, for $a_{n+m} < a_n a_m$, one can argue its sub exponential growth.
- i.e, the rate at which this thing grows is inf $a^{1/n}=0$ or $\lim_{n\to\infty}\,a^{1/n}=0$

1.2 Theorem. Let $a \in A$, A a Banach algebra, then

i) $\sigma(a) \neq \emptyset$ *ii*) $r(a) = \lim_{n \to \infty} ||a^n||^{1/n} = \inf_n ||a^n||^{1/n}$

Proof. :

i) Assume $\sigma(a) \neq \phi$

Then resolvent set $\rho(a) = \mathbb{C}$, $R : \mathbb{C} \to A$ is analytic in \mathbb{C} .

For $|\lambda| > ||a||$, we get,

$$\begin{split} \|R(\lambda)\| &= \|(\lambda 1 - \alpha)^{-1}\| \\ &= |\lambda|\|(1 - \alpha)^{-1}\| \\ &\leq \frac{1}{1 - \frac{1}{|\lambda|} \|\alpha\|} \\ &= \frac{1}{|\lambda| - \|\alpha\|} \end{split}$$

Hence, $||R(\lambda)||$ is uniformly bounded in a set and R is bounded on $\{\lambda \in \mathbb{C} : |\lambda| > ||\alpha||\}$ On the other hand, R is continuous on any closed disk in \mathbb{C} , so R is bounded on all of \mathbb{C} Let $f \in A'$, then $f \circ R : \mathbb{C} \to \mathbb{C}$ is bounded and analytic, consequently it is constant.

So,
$$f \circ R(\lambda) = f \circ R(0)$$

= $f(-a^{-1})$

Here, $\lambda = 0$ and the resolvent at 0 is $-a^{-1}$.

Since f : $f\in A'$, the set of all f distinguish between any two elements in A. So, we know, R $(\lambda)=-a^{-1}$ for any λ

But then,

for
$$\lambda \in \mathbb{C}$$
, $\lambda 1 - a = \lambda 1 - (a^{-1})^{-1}$
= $(R(\lambda))^{-1}$
= $(a^{-1})^{-1}$
= $-a$

Contradiction.

This should hold for every λ and not just for $\lambda=0.$ This shows that $\sigma(\alpha)\neq \emptyset$

Proof.

ii) Let $s(a) = \inf ||a^n||^{1/n}$, then by our lemma (and sub-multiplicativity of norm), $s(a) = \lim_{n \to \infty} ||a^n||^{1/n}$.

Here, our claim is that if $|\lambda| > s(a)$, then it must be the element of s(a).

Now, we show if $|\lambda| > s(a)$, then $\mathcal{X} \in \rho(a)$. where s(a) = candidate for the spectral radius and $\rho(a) = resolvent$ set.

To this end, note that

$$\lim_{n} \sup \|(\lambda^{-1} \mathfrak{a})^{n}\|^{1/n} = \lim_{n \to \infty} \frac{1}{|\lambda|} \|\mathfrak{a}^{n}\|^{1/n}$$

< 1

By asymptotic bound, $\sum_{n=0}^\infty \lambda^{-n} a^n (<1-\epsilon^n)$ converges.

It is Geometric series and we recall that if the series converges, then

$$\begin{split} R(\lambda) &= (\lambda 1 - a)^{-1} \\ &= \frac{1}{\lambda} (1 - \lambda^{-1} a)^{-1} \end{split}$$

We then get,

$$\mathsf{R}(\lambda) = \sum_{n=0}^{\infty} \lambda^{-n-1} a^n$$

and hence, $\lambda \in \rho(\mathfrak{a})$

By comparing $\sigma(a)$ and $\rho(a)$, we see that

$$\begin{split} r(a) &= sup\{ |\lambda|: \lambda \in \sigma(a) \} \\ \text{So,} \qquad r(a) \leq s(a) \qquad --- \qquad i) \end{split}$$

Next, we want to show that equality holds between s(a) and r(a).

Let $\Omega = \{z \in \mathbb{C} > r(\alpha)\} \subset \rho(\alpha)$ (Here, r > r(a). Since $\sigma(\alpha) \neq \emptyset$, r(a) is some number. So, we will look at all the elements in \mathbb{C} and derive s(a) > r(a)).

For each continuous linear functional $f \in A'$, we have $f \circ R : \Omega \to \mathbb{C}$ is analytic and it has a series expansion.

So, f o R (z) = $\sum_{n \in \mathbb{Z}} c_n z^n$

but, for |z|>||a||, we know, $\mathsf{R}(\mathsf{z})=\sum_{n=0}^{\infty}z^{-n-1}a^n$

Comparing coefficients gives that

$$\label{eq:cn} \begin{split} c_n &= 0 \quad \text{for } n \geq 0 \\ \text{and } c_{-1-n} &= f(a^n) \ \text{for } n \geq 0 \end{split}$$

Here, $||a^n||$ is bounded and if we divide by z, it converges to 0.

By our choice of z, $\lim_{n\to\infty} f(a^n)z^{-n} = 0$ (Here, we fix our z. Then, a^n is a convergent sequence in n. Thus, it has a maximum value or sup somewhere. So, for every choice of $f(a^n)$, we will get a sequence of functionals i.e., sequence of operators which are bounded and for every z, we have a bounded sequence of operators)

Now using Banach - Stienhaus, we can see that for $z \in \Omega$, $(z^{-n}a^n)n \in \mathbb{N}$ is uniformly bounded (as a sequence).

Hence, the norms of all of these has some finite sup.

So, there is C > 0 with $||a^n|| \le C |z|^n$

This is true for all $n \in \mathbb{N}$.

Now taking nth root and letting $n \to \infty$, we have $s(a) \leq \lim_{n \to \infty} C^{1/n} |z|$

This works for each z with |z| > r(a)

Taking infimum over all such z gives $\mathsf{s}(\mathsf{a}) \leq \mathsf{r}(\mathsf{a})$ - - - ii)

Since from i) and ii) we get, $r(a) \le s(a)$ and $s(a) \le r(a)$, we have,

Thus, we have, $r(a) = s(a) = \inf ||a^n||^{1/n}$

By doing this theorem we connected spectral radius (invertibility) and asymptotic rate of growth of norms of powers of a.

1.3 Remark. We observe that $r(a) = \lim_{n\to\infty} ||a^n||^{1/n}$ relates algebraic and topological quantities without assuming C*-algebra structure.

1.4 Theorem. (Gelfand-Mazur): Let A be a Banach algebra with unit 1, in which each element $a \neq 0$ is invertible then $A \cong \mathbb{C}$ i.e, dim A = 1

Proof. : Let $a \in A$.

Then $\sigma(a) \neq \emptyset$ and $\lambda 1 - a = 0$ because a is multiple of identity.

By theorem on the spectrum, there is $\lambda \in \sigma(a)$, so $\lambda 1 - a \notin G(A)$.

But by our assumption, $\lambda 1 - a = 0$, then, $a = \lambda 1$

So if we define a map $\eta : \mathbb{C} \to A$ by $\eta(\lambda) = \lambda 1$.

Thus, we can see that $\mathsf{A}\cong\mathbb{C}$

In C*-algebra, we find a more direct relation between the spectral radius and norm.

1.5 Lemma. Let A be a C*-algebra then, i) $\sigma(\alpha^*) = \sigma(\alpha) = \{z : z \in \sigma(\alpha)\}$ ii) If a is normal, $r(a) = ||\alpha||$ iii) For $a \in A$, $||\alpha|| = \sqrt{r(\alpha * \alpha)}$

Proof.

i) We know that a - $\lambda 1$ is invertible in \tilde{A} iff $(\alpha-\lambda 1)^*=\alpha^*-\overline{\lambda}1)$

since $\overline{\lambda} \in \sigma(\mathfrak{a}^*)$ iff $\lambda \in \overline{\sigma(\mathfrak{a})}$

This gives the claimed.