Lecture Notes from November 3, 2022

taken by Alina Rajbhandari

Last Time

- Fourier Series VS Power Series for analytic functions
- Liouville's Theorem
- Asymptotic rate of growth for sequences

Warm up:

For $0 \leq a_{n+m} \leq a_{n} a_{m}$, then $a_{n}^{\frac{1}{n}} \rightarrow \inf _{n} a_{n}^{\frac{1}{n}}$.
Suppose that the equality holds, i.e, $a_{n+m}=a_{n} a_{m}$, then what do I know about a's?
Then a: $\mathbb{N} \rightarrow \mathbb{R}^{+}$is semi-group homomorphism.
All of this is just determined by a_{1} and $a_{n}=a_{1}^{n}$.
This is precisely an exponential growth.

So, for $a_{n+m}<a_{n} a_{m}$, one can argue its sub exponential growth.
i.e, the rate at which this thing grows is inf $a^{1 / n}=0$ or $\lim _{n \rightarrow \infty} a^{1 / n}=0$

1.2 Theorem. Let $a \in A, A$ a Banach algebra, then

i) $\sigma(a) \neq \emptyset$
ii) $r(a)=\lim _{n \rightarrow \infty}\left\|a^{n}\right\|^{1 / n}=\inf _{n}\left\|a^{n}\right\|^{1 / n}$

Proof. :
i) Assume $\sigma(a) \neq \phi$

Then resolvent set $\rho(a)=\mathbb{C}, R: \mathbb{C} \rightarrow A$ is analytic in \mathbb{C}.

$$
\text { For }|\lambda|>\|\mathfrak{a}\| \text {, we get, }
$$

$$
\begin{aligned}
\|R(\lambda)\| & =\left\|(\lambda 1-a)^{-1}\right\| \\
& =\mid \lambda\| \|(1-a)^{-1} \| \\
& \leq \frac{1}{1-\frac{1}{|\lambda|}\|a\|} \\
& =\frac{1}{|\lambda|-\|a\|}
\end{aligned}
$$

Hence, $\|R(\lambda)\|$ is uniformly bounded in a set and R is bounded on $\{\lambda \in \mathbb{C}:|\lambda|>\|a\|\}$
On the other hand, R is continuous on any closed disk in \mathbb{C}, so R is bounded on all of \mathbb{C}

Let $f \in A^{\prime}$, then $f \circ R: \mathbb{C} \rightarrow \mathbb{C}$ is bounded and analytic, consequently it is constant.

$$
\text { So, } \begin{aligned}
f \circ R(\lambda) & =f \circ R(0) \\
& =f\left(-a^{-1}\right)
\end{aligned}
$$

Here, $\lambda=0$ and the resolvent at 0 is $-a^{-1}$.
Since $f: f \in A^{\prime}$, the set of all f distinguish between any two elements in A.
So, we know, $R(\lambda)=-a^{-1}$ for any λ
But then,

$$
\text { for } \begin{aligned}
\lambda \in \mathbb{C}, \quad \lambda 1-a & =\lambda 1-\left(a^{-1}\right)^{-1} \\
& =(R(\lambda))^{-1} \\
& =\left(a^{-1}\right)^{-1} \\
& =-a
\end{aligned}
$$

Contradiction.
This should hold for every λ and not just for $\lambda=0$. This shows that $\sigma(a) \neq \emptyset$

Proof.
ii) Let $s(a)=\inf \left\|a^{n}\right\|^{1 / n}$, then by our lemma (and sub-multiplicativity of norm), $s(a)=\lim _{n \rightarrow \infty}\left\|a^{n}\right\|^{1 / n}$.

Here, our claim is that if $|\lambda|>s(a)$, then it must be the element of $s(a)$.
Now, we show if $|\lambda|>s(a)$, then $\mathcal{X} \in \rho(a)$.
where $s(a)=$ candidate for the spectral radius and $\rho(a)=$ resolvent set.
To this end, note that

$$
\begin{aligned}
\lim _{n} \sup \left\|\left(\lambda^{-1} a\right)^{n}\right\|^{1 / n} & =\lim _{n \rightarrow \infty} \frac{1}{|\lambda|}\left\|a^{n}\right\|^{1 / n} \\
& <1
\end{aligned}
$$

By asymptotic bound, $\quad \sum_{n=0}^{\infty} \lambda^{-n} a^{n}\left(<1-\varepsilon^{n}\right)$ converges.
It is Geometric series and we recall that if the series converges, then

$$
\begin{aligned}
R(\lambda) & =(\lambda 1-a)^{-1} \\
& =\frac{1}{\lambda}\left(1-\lambda^{-1} a\right)^{-1}
\end{aligned}
$$

We then get,
$R(\lambda)=\sum_{n=0}^{\infty} \lambda^{-n-1} a^{n}$
and hence, $\lambda \in \rho(a)$
By comparing $\sigma(a)$ and $\rho(a)$, we see that

$$
\begin{array}{rlrl}
& r(a) & =\sup \{|\lambda|: \lambda \in \sigma(a)\} \\
\text { So, } & & r(a) & \leq s(a)
\end{array}
$$

Next, we want to show that equality holds between $s(a)$ and $r(a)$.
Let $\Omega=\{z \in \mathbb{C}>r(a)\} \subset \rho(a)$
(Here, $r>r(a)$. Since $\sigma(a) \neq \emptyset, r(a)$ is some number. So, we will look at all the elements in \mathbb{C} and derive $s(a)>r(a))$.

For each continuous linear functional $f \in A^{\prime}$, we have $f \circ R: \Omega \rightarrow \mathbb{C}$ is analytic and it has a series expansion.

So, $f \circ R(z)=\sum_{n \in \mathbb{Z}} c_{n} z^{n}$
but, for $|z|>||a||$, we know, $R(z)=\sum_{n=0}^{\infty} z^{-n-1} a^{n}$

Comparing coefficients gives that

$$
c_{n}=0 \quad \text { for } n \geq 0
$$

and $c_{-1-n}=f\left(a^{n}\right)$ for $n \geq 0$

Here, $\left\|a^{n}\right\|$ is bounded and if we divide by z, it converges to 0 .
By our choice of $z, \lim _{n \rightarrow \infty} f\left(a^{n}\right) z^{-n}=0$
(Here, we fix our z. Then, a^{n} is a convergent sequence in n. Thus, it has a maximum value or sup somewhere. So, for every choice of $f\left(a^{n}\right)$, we will get a sequence of functionals i.e., sequence of operators which are bounded and for every z, we have a bounded sequence of operators)

Now using Banach - Stienhaus, we can see that for $z \in \Omega,\left(z^{-n} a^{n}\right) n \in \mathbb{N}$ is uniformly bounded (as a sequence).

Hence, the norms of all of these has some finite sup.
So, there is $\mathrm{C}>0$ with $\left\|a^{n}\right\| \leq \mathrm{C}|z|^{n}$
This is true for all $\mathfrak{n} \in \mathbb{N}$.
Now taking nth root and letting $n \rightarrow \infty$, we have $s(a) \leq \lim _{n \rightarrow \infty} C^{1 / n}|z|$

This works for each z with $|z|>r(a)$
Taking infimum over all such z gives $s(a) \leq r(a) \quad--\quad$ ii)
Since from i) and ii) we get, $r(a) \leq s(a)$ and $s(a) \leq r(a)$, we have,
Thus, we have, $r(a)=s(a)=\inf \left\|a^{n}\right\|^{1 / n}$

By doing this theorem we connected spectral radius (invertibility) and asymptotic rate of growth of norms of powers of a.
1.3 Remark. We observe that $r(a)=\lim _{n \rightarrow \infty}\left\|a^{n}\right\|^{1 / n}$ relates algebraic and topological quantities without assuming C^{*}-algebra structure.
1.4 Theorem. (Gelfand-Mazur): Let A be a Banach algebra with unit 1, in which each element $a \neq 0$ is invertible then $A \cong \mathbb{C}$ i.e, $\operatorname{dim} A=1$

Proof. : Let $a \in A$.
Then $\sigma(a) \neq \emptyset$ and $\lambda 1-a=0$ because a is multiple of identity.
By theorem on the spectrum, there is $\lambda \in \sigma(a)$, so $\lambda 1-a \notin G(A)$.

But by our assumption, $\lambda 1-\mathrm{a}=0$, then, $\mathrm{a}=\lambda 1$
So if we define a map $\eta: \mathbb{C} \rightarrow A$ by $\eta(\lambda)=\lambda 1$.
Thus, we can see that $A \cong \mathbb{C}$

In C^{*}-algebra, we find a more direct relation between the spectral radius and norm.
1.5 Lemma. Let A be a C^{*}-algebra then,
i) $\sigma\left(a^{*}\right)=\sigma(a)=\{z: z \in \sigma(a)\}$
ii) If a is normal, $r(a)=\|a\|$
iii) For $a \in A,\|\mathfrak{a}\|=\sqrt{r(a * a)}$

Proof.
i) We know that a $-\lambda 1$ is invertible in \tilde{A} iff $\left.(a-\lambda 1)^{*}=a^{*}-\bar{\lambda} 1\right)$
since $\bar{\lambda} \in \sigma\left(a^{*}\right)$ iff $\lambda \in \overline{\sigma(a)}$
This gives the claimed.

