Lecture Notes from Novermber 3, 2022

taken by Joseph Walker

0 Warm-Up

Recall that $0 \le a_{n+m} \le a_n a_m$ implies $a_n^{1/n} \to inf a_n^{1/n}$ for $a_n \in \mathbb{R}$. Looking at the edge case of $a_{n+m} = a_n a_m$, we see that $a : \mathbb{N} \to \mathbb{R}^+$ is a semigroup homomorphism determined by $a_n = a_1^n$.

1 The Spectral Theorem

1.0.1 Theorem. Let $a \in A$, A a Banach Algebra. Then we have the following results for the spectrum:

(i) $\sigma(\mathfrak{a}) \neq \emptyset$

(*ii*)
$$r(a) = \lim_{n \to \infty} ||a^n||^{1/n} = \inf_n ||a^n||^{1/n}$$

 $\begin{array}{l} \textit{Proof. Assume } \sigma(a) = \textrm{Then } \rho(a) = \mathbb{C} - \sigma(a) = \mathbb{C}. \hspace{0.2cm} \textrm{R}: \mathbb{C} \rightarrow \textrm{A s.t.} \hspace{0.2cm} \textrm{R}(\lambda) = (\lambda 1 - a)^{-1} \\ \textrm{is analytic in } \mathbb{C}, \hspace{0.2cm} \textrm{so for } \lambda > \|a\| \hspace{0.2cm} \textrm{we get } \|\textrm{R}(\lambda)\| = \|(\lambda 1 - a)^{-1}\| = |\lambda|\|(1 - \lambda^{-1}a)^{-1}\| = |\lambda|^{-1}\|(1 - \lambda^{-1}a)\| \leq \lambda^{-1}\frac{1}{1 - \frac{1}{|\lambda|}\|a\|} \end{array}$

Hence R is bounded on $\{\lambda \in \mathbb{C} : |\lambda| \ge ||a||\}$. On the other hand, R is continuous on any closed disk in \mathbb{C} , so R is bounded on all of \mathbb{C} . Now let $f \in A'$ (the dual of A). Then $f \circ R : \mathbb{C} \to \mathbb{C}$ is bounded analytic, hence it is constant so $f \circ R(\lambda) = f \circ R(0) = f(-a)$

Since $\{f : f \in A'\}$ distinguishes between any 2 elements in A, we have $R(\lambda) = -a^{-1}$. But then $\lambda 1 - a = R(\lambda)^{-1} = (-a)^{-1} = -a$ for each $\lambda \in \mathbb{C}$ for each $\lambda \in \mathbb{C}$. Contradiction! This proves (i)

Now we prove item (ii). Let $s(a) = \inf_{n} ||a^{n}||^{1/n}$, then as in the warm-up, we have $s(a) = \lim_{n \to \infty} ||a_{n}||^{1/n}$. We show if $|\lambda|s(a)$, the $\lambda \in \rho(a)$. Note that $\limsup_{n} ||(\lambda^{-1}a)^{n}||^{1/n} = \lim_{n \to \infty} \frac{1}{|\lambda|} ||a||^{1/n} < 1$. Therefore by Asymptotic bound, $\sum_{n=0}^{\infty} \lambda^{-1} a^{n}$ converges.

Recall that if $(\lambda 1 - \alpha)^{-1} = \frac{1}{\lambda}(1 - \lambda^{-1}\alpha)^{-1}$ we have $R(\lambda) = \sum_{n=0}^{\infty} \lambda^{-n-1} \alpha^n$ thus $\lambda \in \rho(\alpha)$. By comparing $\sigma(\alpha)$ and $\rho(\alpha)$ we see that $r(\alpha) = \sup\{|\lambda| : \lambda \in \sigma(\alpha)\} \le s(\alpha)$. To show equality between $s(\alpha)$, $r(\alpha)$ we let $r > r(\alpha)$, $\Omega = \{z \in \mathbb{C} : |z| > r(\alpha)\} \subset \rho(\alpha)$. For each $f \in A'$, we have $f \circ R : \Omega \to \mathbb{C}$ is analytic and has the series expansion $f \circ R(z) = \sum_{n \in \mathbb{Z}} c_n z^n$, but for $|z| > ||\alpha||$ we

know $R(z) = \sum_{n=0}^{\infty} z^{-n-1} a^n$. Comparing coefficients give $c_n = 0$ for $n \ge 0$ and $c_{-1-n} = f(a^n)$ for $n \ge 0$. By our choice of z, $\lim_{n\to\infty} f(a^n)z^{-n} = 0$. Then by Banach-Steinhaus, we see that for $z \in \Omega$, $(z^{-n}a^n)_{n\in\mathbb{N}}$ is uniformly bounded. Therefore there exists C > 0 with $||a^n|| \le C|z|^n$ for all $n \in \mathbb{N}$. Thus $s(a) \le \lim_{n\to\infty} C^{1/n}|z| = |z|$. This works for each z with |z| > r(a). Taking the infimmum over all such z yields $s(a) \le r(a)$. Thus s(a) = r(a).

1.0.2 Remark. It is important to observe that the identity $r(a) = \lim_{n \to \infty} ||a^n||^{1/n}$ relates algebraic and topological quantities without assuming C^* algebra structure.

2 Consequences of the Theory of the Spectrum

We explore the consequences of spectral theory.

2.0.1 Theorem. Let A be a Banach Algebra with unit 1, in which each element $a \neq 0$ is invertible, then $A \cong \mathbb{C}$ and dim = 1.

Proof. Let $a \in A$. By the above theorem on the spectrum, the exists $\lambda \in \sigma(A)$ s.t. $\lambda 1 - a \notin G(A)$ but by assumption $\lambda 1 - a = 0$ thus $a = \lambda 1$

In C* algebras, we find more direct relationships between the spectrum and the norm

2.0.2 Lemma. Let A be a C^* algebra.

(i)
$$\sigma(a^*) = \sigma(a)$$

- (ii) if a is normal, r(a) = ||a||
- (iii) for $a \in A$, $||a|| = \sqrt{r(a^*a)}$

Proof. i) We know that $a - \lambda 1$ is invertible in \tilde{A} iff $(a^* - \lambda 1)^* = a^* - \overline{A} 1$. This gives the relation.

The rest of the proof is to be continued....