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0 Warm-Up

Recall that 0 ≤ an+m ≤ anam implies a
1/n
n → infa

1/n
n for an ∈ R. Looking at the edge case of

an+m = anam, we see that a : N → R+ is a semigroup homomorphism determined by an = an1 .

1 The Spectral Theorem

1.0.1 Theorem. Let a ∈ A, A a Banach Algebra. Then we have the following results for the
spectrum:

(i) σ(a) 6= ∅

(ii) r(a) = lim
n→∞‖an‖1/n = inf

n
‖an‖1/n

Proof. Assume σ(a) = Then ρ(a) = C − σ(a) = C. R : C → A s.t. R(λ) = (λ1 − a)−1

is analytic in C, so for λ > ‖a‖ we get ‖R(λ)‖ = ‖(λ1 − a)−1‖ = |λ|‖(1 − λ−1a)−1‖ =
|λ|−1‖(1− λ−1a)‖ ≤ λ−1 1

1− 1
|λ|
‖a‖

Hence R is bounded on {λ ∈ C : |λ| ≥ ‖a‖}. On the other hand, R is continuous on any closed
disk in C, so R is bounded on all of C. Now let f ∈ A ′

(the dual of A). Then f ◦ R : C → C is
bounded analytic, hence it is constant so f ◦ R(λ) = f ◦ R(0) = f(−a)

Since {f : f ∈ A ′
} distinguishes between any 2 elements in A, we have R(λ) = −a−1. But

then λ1 − a = R(λ)−1 = (−a)−1 = −a for each λ ∈ C for each λ ∈ C. Contradiction! This
proves (i)

Now we prove item (ii). Let s(a) = inf
n
‖an‖1/n , then as in the warm-up, we have

s(a) = lim
n→∞‖an‖1/n. We show if |λ|s(a), the λ ∈ ρ(a). Note that limsup

n
‖(λ−1a)n‖1/n =

lim
n→∞ 1

|λ|
‖a‖1/n < 1. Therefore by Asymptotic bound,

∑∞
n=0 λ

−1an converges.

Recall that if (λ1− a)−1 = 1
λ
(1− λ−1a)−1 we have R(λ) =

∑∞
n=0

λ−n−1an thus λ ∈ ρ(a). By

comparing σ(a) and ρ(a) we see that r(a) = sup{|λ| : λ ∈ σ(a)} ≤ s(a). To show equality
between s(a), r(a) we let r > r(a),Ω = {z ∈ C : |z| > r(a)} ⊂ ρ(a). For each f ∈ A ′

, we have
f ◦ R : Ω→ C is analytic and has the series expansion f ◦ R(z) =

∑
n∈Z
cnz

n, but for |z| > ‖a‖ we
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know R(z) =
∑∞
n=0

z−n−1an. Comparing coefficients give cn = 0 for n ≥ 0 and c−1−n = f(an)

for n ≥ 0. By our choice of z, lim
n→∞f(an)z−n = 0. Then by Banach-Steinhaus, we see that for

z ∈ Ω, (z−nan)n∈N is uniformly bounded. Therefore there exists C > 0 with ‖an‖ ≤ C|z|n for
all n ∈ N. Thus s(a) ≤ lim

n→∞C1/n|z| = |z|. This works for each z with |z| > r(a). Taking the

infimmum over all such z yields s(a) ≤ r(a). Thus s(a) = r(a).

1.0.2 Remark. It is important to observe that the identity r(a) = lim
n→∞‖an‖1/n relates algebraic

and topological quantities without assuming C∗ algebra structure.

2 Consequences of the Theory of the Spectrum

We explore the consequences of spectral theory.

2.0.1 Theorem. Let A be a Banach Algebra with unit 1, in which each element a 6= 0 is
invertible, then A ∼= C and dim = 1.

Proof. Let a ∈ A. By the above theorem on the spectrum, the exists λ ∈ σ(A) s.t. λ1 − a /∈
G(A) but by assumption λ1− a = 0 thus a = λ1

In C∗ algebras, we find more direct relationships between the spectrum and the norm

2.0.2 Lemma. Let A be a C∗ algebra.

(i) σ(a∗) = σ(a)

(ii) if a is normal, r(a) = ‖a‖

(iii) for a ∈ A, ‖a‖ =
√
r(a∗a)

Proof. i) We know that a − λ1 is invertible in Ã iff (a∗ − λ1)∗ = a∗ − A1. This gives the
relation.

The rest of the proof is to be continued....
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