MATH 7320 Lecture Notes

Note-taker: Kumari Teena

November 8, 2022

Last time:

- Spectrum Properties.

Warm up: Let $\mathcal{H}=\mathbb{C}^{n}, \mathcal{A}=\mathcal{B}\left(\mathbb{C}^{n}\right), n \geq 2$. Define an operator a on \mathcal{H} by

$$
a\left(\begin{array}{c}
z_{1} \\
z_{2} \\
\vdots \\
z_{n}
\end{array}\right)=\left(\begin{array}{c}
z_{2} \\
z_{3} \\
\vdots \\
z_{n} \\
0
\end{array}\right)
$$

then

$$
a^{*}\left(\begin{array}{c}
z_{1} \\
z_{2} \\
\vdots \\
z_{n}
\end{array}\right)=\left(\begin{array}{c}
0 \\
z_{1} \\
z_{2} \\
\vdots \\
z_{n-1}
\end{array}\right) .
$$

Fix $\left(z_{1}, z_{2}, \cdots, z_{n}\right) \in \mathcal{H}$. Then for every $\left(w_{1}, w_{2}, \cdots, w_{n}\right) \in \mathcal{H}$, we have

$$
\begin{aligned}
\left\langle\left(w_{1}, w_{2}, \cdots, w_{n}\right), a^{*}\left(z_{1}, z_{2}, \cdots, z_{n}\right)\right\rangle & =\left\langle a\left(w_{1}, w_{2}, \cdots, w_{n}\right),\left(z_{1}, z_{2}, \cdots, z_{n}\right)\right\rangle \\
& =\left\langle\left(w_{2}, w_{3} \cdots, w_{n}, 0\right),\left(z_{1}, z_{2}, \cdots, z_{n}\right)\right\rangle \\
& =w_{2} \overline{z_{1}}+w_{3} \overline{z_{2}}+\cdots+w_{n} \overline{z_{n-1}} \\
& =\left\langle\left(w_{1}, w_{2}, w_{3}, \cdots, w_{n}\right),\left(0, z_{1}, z_{2}, \cdots, z_{n-1}\right)\right\rangle .
\end{aligned}
$$

Thus,

$$
a^{*}\left(z_{1}, z_{2}, \cdots, z_{n}\right)=\left(0, z_{1}, z_{2}, \cdots, z_{n-1}\right) .
$$

So,

$$
a^{*} a\left(\begin{array}{c}
z_{1} \\
z_{2} \\
\vdots \\
z_{n}
\end{array}\right)=\left(\begin{array}{c}
0 \\
z_{2} \\
z_{3} \\
\vdots \\
z_{n}
\end{array}\right) .
$$

This implies that

$$
\left(a^{*} a\right)^{2}\left(\begin{array}{c}
z_{1} \\
z_{2} \\
\vdots \\
z_{n}
\end{array}\right)=\left(\begin{array}{c}
0 \\
z_{2} \\
z_{3} \\
\vdots \\
z_{n}
\end{array}\right)=a^{*} a\left(\begin{array}{c}
z_{1} \\
z_{2} \\
\vdots \\
z_{n}
\end{array}\right)
$$

So, $\left(a^{*} a\right)^{2}=a^{*} a$. Hence, $a^{*} a$ is an orthogonal projection and by $a^{*} a \neq 0$, we get $1=\left\|a^{*} a\right\|=\|a\|^{2}$. So, $\|a\|=1$.
However, $a^{n}=0$, and same $a^{m}=a^{n+(m-n)}=0$, for any $m \geq n$, and hence $r(a)=0$. So, $\sigma(a) \neq \emptyset$, we know $\sigma(a)=\{0\}$.
We see that the spectral radius and the norm can be very different. We revisit the proof of theorem from last time

1 Relation between spectral radius and norm in C^{*}-algebra

Lemma 1. Let \mathcal{A} be $C^{*}-$ algebra, then
(i) $\sigma\left(a^{*}\right)=\overline{\sigma(a)}=\{\bar{z}: z \in \sigma(a)\}$.
(ii) If a is normal, then $r(a)=\|a\|$.
(iii) For $a \in \mathcal{A},\|a\|=\sqrt{r\left(a^{*} a\right)}$.

Proof. (i) We know that $a-\lambda 1$ is invertible in $\tilde{\mathcal{A}}$ if and only if $(a-\lambda 1)^{*}=$ $a^{*}-\bar{\lambda} 1$. This gives the claimed relationship.
(ii) If a is normal, then so is a^{2}, because $a^{2}\left(a^{2}\right)^{*}=a^{2}\left(a^{*}\right)^{2}=\left(a a^{*}\right)^{2}=$
$\left(a^{*} a\right)^{2}=\left(a^{2}\right)^{*} a^{2}$. Hence,

$$
\begin{aligned}
\left\|a^{2}\right\|^{2} & =\left\|(a)^{2}\left(a^{2}\right)^{*}\right\| \\
& =\left\|\left(a a^{*}\right)\left(a a^{*}\right)\right\| \\
& =\left\|a a^{*}\left(a a^{*}\right)^{*}\right\| \quad(\text { due to Hermitian }) \\
& =\left\|\left(a a^{*}\right)^{2}\right\|=\left\|a^{4}\right\| \quad\left(\text { By properties of } C^{*}-\text { algebra }\right) .
\end{aligned}
$$

$$
\Longrightarrow \quad\left\|a^{2}\right\|=\|a\|^{2}
$$

Inductively, $\left\|a^{2^{n}}\right\|=\|a\|^{2^{n}}$, for each $n \in \mathbb{N}$. Thus,

$$
r(a)=\lim _{n \rightarrow \infty}\left\|a^{2^{n}}\right\|^{\frac{1}{2^{n}}}=\|a\| .
$$

(iii) This follows from (ii). Since $a a^{*}$ and $a^{*} a$ are normal, then

$$
\begin{aligned}
& r\left(a a^{*}\right)=\left\|a a^{*}\right\|=\|a\|^{2} \\
& \Longrightarrow\|a\|=\left(r\left(a a^{*}\right)\right)^{1 / 2} .
\end{aligned}
$$

Next we investigate how the spectrum behaves under homomorphisms.
Lemma 2. Let $f: \mathcal{A} \longrightarrow \mathcal{B}$, be a homomorphism between algebras with unit $f(1)=1$, then for $a \in \mathcal{A}$,

$$
\sigma(f(a)) \subset \sigma(a)
$$

where $\sigma(f(a))$ is spectrum in \mathcal{B} and $\sigma(a)$ is spectrum in \mathcal{A}.
Proof. We show equivalently that, $\rho(a) \subset \rho(f(a))$ (by taking compliments of set of spectrum). Here $\rho(a)$ denotes resolvant set of operator a. Let $\lambda \in \mathbb{C}$ be such that $a-\lambda 1 \in \mathcal{G}(\mathcal{A})$, with $\mathcal{R}=(a-\lambda 1)^{-1} \in \mathcal{A}$.
Applying f to $(a-\lambda 1) \mathcal{R}$ gives

$$
\begin{aligned}
f(a-\lambda 1) f(\mathcal{R}) & =(f(a)-\lambda 1) f(\mathcal{R}) \\
& =f(1)=1 .
\end{aligned}
$$

So, $f(a)-\lambda 1$ has right inverse $f(\mathcal{R})$. Similarly, $R(a-\lambda 1)=1$ gives that $f(a)-\lambda 1$ has a left inverse.
So, $f(a)-\lambda 1$ is invertible with $(f(a)-\lambda 1)^{-1}=f(\mathcal{R}) \in \mathcal{B}$. This shows $\lambda \in \rho(f(a))$.

Remark 3. In particular, if $\mathcal{A} \subset \mathcal{B}, f=i_{d}$, then $\sigma(a)$ can only shrink when enlarging the algebra.

Next, we study what happens when f respects the involution.
Theorem 4. Let \mathcal{A} be a Banach-*-algebra and \mathcal{B} a C^{*}-algebra and f : $\mathcal{A} \longrightarrow \mathcal{B}$ is a homomorphism (f is algebra homomorphism, f is bounded, $f\left(a^{*}\right)=(f(a))^{*}$ for each $\left.a \in \mathcal{A}\right)$. Then, f is a contraction, i.e. $\|f(a)\| \leq\|a\|$, for all $a \in \mathcal{A}$.

Proof. If we take $\mathcal{B}=\overline{f(\mathcal{A})}$, then the statement about $\|f\|$ is unaffected. So we can assume $f(\mathcal{A})$ is dense in \mathcal{B}.
If 1 is a unit in \mathcal{A}, then $f(1) f(a)=f(a)$. So, by C^{*}-algebra structure, $f(1)$ is a unit in \mathcal{B}. If \mathcal{A} does not have a unit, then we extend \mathcal{A}, \mathcal{B}, and f to $\tilde{f}: \tilde{\mathcal{A}} \longrightarrow \tilde{\mathcal{B}},(a, \lambda) \longrightarrow(f(a), \lambda)$. Thus, $\tilde{f}(0,1)=(0,1)$. Now applying the preceding Lemma gives $\sigma(f(a)) \subset \sigma(a)$.
Consider, $a=a^{*} \in \mathcal{A}$, then by assumption on $f, f(a)=(f(a))^{*}$ and hence (since Hermitian are normal i.e. a is normal, $\|a\|=r(a)$, and $\|f(a)\|=$ $r(f(a)))$. So, $f(a)$ is normal.

$$
\|f(a)\|=r(f(a)) \leq r(a) \leq\|a\| .
$$

For general $a \in \mathcal{A}$, we have

$$
\begin{aligned}
\|f(a)\|^{2} & =\left\|f(a)^{*} f(a)\right\| \\
& =\left\|f\left(a^{*} a\right)\right\| \\
& \leq\left\|a^{*} a\right\| \\
& \leq\left\|a^{*}\right\|\|a\| \\
\Longrightarrow\|f(a)\|^{2} & \leq\|a\|^{2} .
\end{aligned}
$$

