MATH 7320 Lecture Notes

Note-taker: Kumari Teena

November 8, 2022

Last time:

• Spectrum Properties.

Warm up: Let $\mathcal{H} = \mathbb{C}^n$, $\mathcal{A} = \mathcal{B}(\mathbb{C}^n)$, $n \ge 2$. Define an operator a on \mathcal{H} by

$$a \begin{pmatrix} z_1 \\ z_2 \\ \vdots \\ z_n \end{pmatrix} = \begin{pmatrix} z_2 \\ z_3 \\ \vdots \\ z_n \\ 0 \end{pmatrix},$$

then

$$a^* \begin{pmatrix} z_1 \\ z_2 \\ \vdots \\ z_n \end{pmatrix} = \begin{pmatrix} 0 \\ z_1 \\ z_2 \\ \vdots \\ z_{n-1} \end{pmatrix}.$$

Fix $(z_1, z_2, \cdots, z_n) \in \mathcal{H}$. Then for every $(w_1, w_2, \cdots, w_n) \in \mathcal{H}$, we have

$$\langle (w_1, w_2, \cdots, w_n), a^*(z_1, z_2, \cdots, z_n) \rangle = \langle a(w_1, w_2, \cdots, w_n), (z_1, z_2, \cdots, z_n) \rangle$$

= $\langle (w_2, w_3 \cdots, w_n, 0), (z_1, z_2, \cdots, z_n) \rangle$
= $w_2 \overline{z_1} + w_3 \overline{z_2} + \cdots + w_n \overline{z_{n-1}}$
= $\langle (w_1, w_2, w_3, \cdots, w_n), (0, z_1, z_2, \cdots, z_{n-1}) \rangle.$

Thus,

$$a^*(z_1, z_2, \cdots, z_n) = (0, z_1, z_2, \cdots, z_{n-1}).$$

So,

$$a^*a \begin{pmatrix} z_1 \\ z_2 \\ \vdots \\ z_n \end{pmatrix} = \begin{pmatrix} 0 \\ z_2 \\ z_3 \\ \vdots \\ z_n \end{pmatrix}.$$

This implies that

$$(a^*a)^2 \begin{pmatrix} z_1 \\ z_2 \\ \vdots \\ z_n \end{pmatrix} = \begin{pmatrix} 0 \\ z_2 \\ z_3 \\ \vdots \\ z_n \end{pmatrix} = a^*a \begin{pmatrix} z_1 \\ z_2 \\ \vdots \\ z_n \end{pmatrix}.$$

So, $(a^*a)^2 = a^*a$. Hence, a^*a is an orthogonal projection and by $a^*a \neq 0$, we get $1 = ||a^*a|| = ||a||^2$. So, ||a|| = 1.

However, $a^n = 0$, and same $a^m = a^{n+(m-n)} = 0$, for any $m \ge n$, and hence r(a) = 0. So, $\sigma(a) \ne \emptyset$, we know $\sigma(a) = \{0\}$.

We see that the spectral radius and the norm can be very different. We revisit the proof of theorem from last time

1 Relation between spectral radius and norm in C^* -algebra

Lemma 1. Let \mathcal{A} be C^* - algebra, then (i) $\sigma(a^*) = \overline{\sigma(a)} = \{\overline{z} : z \in \sigma(a)\}.$ (ii) If a is normal, then r(a) = ||a||.(iii) For $a \in \mathcal{A}$, $||a|| = \sqrt{r(a^*a)}.$

Proof. (i) We know that $a - \lambda 1$ is invertible in $\tilde{\mathcal{A}}$ if and only if $(a - \lambda 1)^* = a^* - \overline{\lambda} 1$. This gives the claimed relationship.

(*ii*) If a is normal, then so is a^2 , because $a^2(a^2)^* = a^2(a^*)^2 = (aa^*)^2 = (aa^*)^2$

 $(a^*a)^2 = (a^2)^*a^2$. Hence,

_

$$\begin{split} \|a^2\|^2 &= \|(a)^2(a^2)^*\| \\ &= \|(aa^*)(aa^*)\| \\ &= \|aa^*(aa^*)^*\| \quad (due \ to \ Hermitian) \\ &= \|(aa^*)^2\| = \|a^4\| \quad (By \ properties \ of \ C^* - algebra). \\ & \Rightarrow \quad \|a^2\| = \|a\|^2. \end{split}$$

Inductively, $||a^{2^n}|| = ||a||^{2^n}$, for each $n \in \mathbb{N}$. Thus,

$$r(a) = \lim_{n \to \infty} \|a^{2^n}\|^{\frac{1}{2^n}} = \|a\|$$

(*iii*) This follows from (*ii*). Since aa^* and a^*a are normal, then

$$r(aa^*) = ||aa^*|| = ||a||^2$$

 $\implies ||a|| = (r(aa^*))^{1/2}.$

_	_	_	n	
			L	
_				

Next we investigate how the spectrum behaves under homomorphisms.

Lemma 2. Let $f : \mathcal{A} \longrightarrow \mathcal{B}$, be a homomorphism between algebras with unit f(1) = 1, then for $a \in \mathcal{A}$,

$$\sigma(f(a)) \subset \sigma(a),$$

where $\sigma(f(a))$ is spectrum in \mathcal{B} and $\sigma(a)$ is spectrum in \mathcal{A} .

Proof. We show equivalently that, $\rho(a) \subset \rho(f(a))$ (by taking compliments of set of spectrum). Here $\rho(a)$ denotes resolvant set of operator a. Let $\lambda \in \mathbb{C}$ be such that $a - \lambda 1 \in \mathcal{G}(\mathcal{A})$, with $\mathcal{R} = (a - \lambda 1)^{-1} \in \mathcal{A}$. Applying f to $(a - \lambda 1)\mathcal{R}$ gives

$$f(a - \lambda 1)f(\mathcal{R}) = (f(a) - \lambda 1)f(\mathcal{R})$$
$$= f(1) = 1.$$

So, $f(a) - \lambda 1$ has right inverse $f(\mathcal{R})$. Similarly, $R(a - \lambda 1) = 1$ gives that $f(a) - \lambda 1$ has a left inverse.

So, $f(a) - \lambda 1$ is invertible with $(f(a) - \lambda 1)^{-1} = f(\mathcal{R}) \in \mathcal{B}$. This shows $\lambda \in \rho(f(a))$.

Remark 3. In particular, if $\mathcal{A} \subset \mathcal{B}$, $f = i_d$, then $\sigma(a)$ can only shrink when enlarging the algebra.

Next, we study what happens when f respects the involution.

Theorem 4. Let \mathcal{A} be a Banach-*-algebra and \mathcal{B} a C*-algebra and f: $\mathcal{A} \longrightarrow \mathcal{B}$ is a homomorphism (f is algebra homomorphism, f is bounded, $f(a^*) = (f(a))^*$ for each $a \in \mathcal{A}$). Then, f is a contraction, i.e. $||f(a)|| \le ||a||$, for all $a \in \mathcal{A}$.

Proof. If we take $\mathcal{B} = \overline{f(\mathcal{A})}$, then the statement about ||f|| is unaffected. So we can assume $f(\mathcal{A})$ is dense in \mathcal{B} .

If 1 is a unit in \mathcal{A} , then f(1)f(a) = f(a). So, by C^* -algebra structure, f(1)is a unit in \mathcal{B} . If \mathcal{A} does not have a unit, then we extend \mathcal{A} , \mathcal{B} , and f to $\tilde{f} : \tilde{\mathcal{A}} \longrightarrow \tilde{\mathcal{B}}$, $(a, \lambda) \longrightarrow (f(a), \lambda)$. Thus, $\tilde{f}(0, 1) = (0, 1)$. Now applying the preceding Lemma gives $\sigma(f(a)) \subset \sigma(a)$.

Consider, $a = a^* \in \mathcal{A}$, then by assumption on f, $f(a) = (f(a))^*$ and hence (since Hermitian are normal i.e. a is normal, ||a|| = r(a), and ||f(a)|| = r(f(a))). So, f(a) is normal.

$$||f(a)|| = r(f(a)) \le r(a) \le ||a||.$$

For general $a \in \mathcal{A}$, we have

$$\|f(a)\|^{2} = \|f(a)^{*}f(a)\|$$

= $\|f(a^{*}a)\|$
 $\leq \|a^{*}a\|$
 $\leq \|a^{*}\|\|a\|$
 $\Rightarrow \|f(a)\|^{2} \leq \|a\|^{2}.$

=

		٦