Lecture Notes from November 11, 2022

taken by Tanvi Telang

Last time Properties of the spectrum Warm up:

1.47 Question. Relation between spectral radius and C*-algebra norms.

Let $\mathcal{H} = \mathbb{C}^n$, $\mathcal{A} = \mathbb{B}(\mathbb{C}^n)$ $n \geq 2$.

$$a\begin{pmatrix}z_1\\z_2\\\cdot\\\cdot\\z_n\end{pmatrix}=\begin{pmatrix}z_2\\z_3\\\cdot\\z_n\\0\end{pmatrix},$$

then for basis elements $e_1, e_2, \cdots e_n$

$$ae_{1} = a \begin{pmatrix} 1 \\ 0 \\ \cdot \\ 0 \\ 0 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ \cdot \\ 0 \\ 0 \end{pmatrix}, ae_{2} = a \begin{pmatrix} 0 \\ 1 \\ \cdot \\ 0 \\ 0 \end{pmatrix} = \begin{pmatrix} 1 \\ 0 \\ \cdot \\ 0 \\ 0 \end{pmatrix} = e_{1} \text{ and } ae_{k} = e_{k-1}.$$

Hence, $\langle ae_k, e_j \rangle = \langle e_{k-1}, e_j \rangle = \langle e_k, e_{j+1} \rangle = \langle e_k, a^*e_j \rangle$ and so $a^*e_k = e_{k+1}$.

	$\langle z_1 \rangle$		(0	
	z_2		z_1	
a*	•	=	z_2	
	•		•	
	$\langle z_n \rangle$		$\langle z_{n-1} \rangle$	1/

Also,

$$(a^*a)\begin{pmatrix} z_1\\z_2\\\cdot\\\cdot\\z_n \end{pmatrix} = \begin{pmatrix} 0\\z_2\\z_3\\\cdot\\z_n \end{pmatrix}$$

hence (a^*a) is an orthogonal projection and since $(a^*a) \neq 0 ||a^*a|| = 1 = ||a||^2$ so ||a|| = 1. (Observe that this is why we need $n \ge 2$.) However, $a^n = 0$ and so $a^m = a^{n+m-n} = 0$ for all $m \ge n$, hence r(a) = 0 but since $\sigma(a) \neq \varphi$, we have $\sigma(a) \neq \{0\}$. In areas such as numerical analysis, $\sigma(a^*a)$ is studied not $\sigma(a)$ to get more information as it is non-empty.

We revisit the lemma from last time.

1.48 Lemma. Let \mathcal{A} be a C^* -algebra. Then

- $\sigma(a^*) = \overline{\sigma(a)} = \{\overline{\lambda} : \lambda \in \sigma(a)\}.$
- If a is normal, r(a) = ||a||.
- For $a \in A$, $||a|| = \sqrt{r(a^*a)}$
- *Proof.* 1. We know that $a \lambda 1$ is invertible in $\tilde{A} \iff (a \lambda 1)^* = a^* \bar{\lambda} 1$ is invertible, i.e., $\overline{\lambda} \in (\sigma(a^*))^C \iff \lambda \in (\sigma(a))^C$.
 - 2. If a is normal, $a^*a = aa^*$ then $a^2(a^2)^* = a\underline{aa^*}a^* = \underline{aa^*} \underline{aa^*} = a^*\underline{aa^*}a = a^*a^*aa = (a^*)^2a^2$, so a^2 is also normal. Hence,

$$\|a^{2}\|^{2} \underset{C^{*}alg.}{=} \|a^{2}(a^{2})^{*}\| = \|\|aa^{*}aa^{*}\|$$
$$= \|aa^{*}(aa^{*})^{*}\|$$
$$\underset{C^{*}alg.}{=} \|aa^{*}\|^{2}$$
$$= \|a\|^{4}$$

Taking square roots, we get $||a^2|| = ||a||^2$, and inductively we have $||a^{2^n}| = ||a||^{2^n}$ for all $n \in \mathbb{N}$. Thus, considering a subsequence $(a^{2^n})of(a^n)$ we get

$$\mathbf{r}(\mathbf{a}) = \lim_{n} \|\mathbf{a}^{n}\|^{1/n} = \lim_{n} \|\mathbf{a}^{2^{n}}\|^{1/2^{n}} = \|\mathbf{a}\|$$

3. This follows from 2. since a^*a (and aa^*) is normal and so

$$r(a^*a) = \|a^*a\| = \|a\|^2$$
 and thus $\|a\| = \sqrt{r(a^*a)} = \sqrt{r(aa^*)}.$

Next, we investigate how the spectrum behaves under homomorphisms.

1.49 Lemma. Let $f : A \to B$ be a homomorphisms between algebras woth unit s.t. $f(1_A) = 1_B$, then for any $a \in A$,

$$\sigma(f(\alpha))\subset\sigma(\alpha)$$

Note that the left side is a spectrum in \mathcal{B} and the right side is a spectrum in \mathcal{A} (i.e., we consider inverses in those algebras respectively).

Proof. We show equivalently that $\rho(a) \subset \rho(f(a))$ (taking complements). Let $\lambda \in \mathbb{C}$ be such that $a - \lambda 1 \in G(\mathcal{A})$, with $R = (a - \lambda 1)^{-1} \in \mathcal{A}$. Applying f to

$$(a - \lambda 1)R$$
 gives $f(a - \lambda 1)f(R) = (f(a) - \lambda f(1))f(R) = (f(a) - \lambda)f(R)$.

Since $(a - \lambda 1)R = 1 \implies (f(a) - \lambda)f(R) = f(1) = 1$. Thus f(R) is a right inverse of $f(a - \lambda 1)$. Similarly $(a - \lambda 1)R \implies f(R)(f(a) - \lambda) = f(1) = 1$. Thus $f(a - \lambda 1)^{-1} = f(R) \in \mathcal{B}$ and $\lambda \in \rho(f(a))$. In particular, if $\mathcal{A} \subset \mathcal{B}$, $f = \mathrm{id}$ then $\sigma(a)$ can only shrink when enlarging the algebra.

Next, we study what happens when f respects the involution.

1.50 Theorem. Let \mathcal{A} be a Banach-*-algebra, \mathcal{B} be a C*-algebra, and $f : \mathcal{A} \to \mathcal{B}$ be a homomorphism, i.e., it is a algebra homomorphism, bounded and respects the involution, then f is a contraction $(\|f(\alpha)\| \le \|\alpha\|, \forall \alpha \in \mathcal{A})$.

Proof. When restricting \mathcal{B} to be the closure of the range of f, then the statement on $||f(a)|| \le ||a||$ is unchanged, so we can assume WLOG f(A) dense in B. If 1 is a unit in \mathcal{A} , then f(1)f(a) = f(a) so f(1) is the id on $f(\mathcal{A})$ and by density of $f(\mathcal{A})$ and continuity of the product f(1)b = b, $\forall b \in \mathcal{B}$. By the C*-algebra structure of \mathcal{B} , (left=right identity) f(1) is a unit in \mathcal{B} . If \mathcal{A} does not have a unit, $f(\mathcal{A})$ does not have a unit, so we extend \mathcal{A} , \mathcal{B} , and f:

$$ilde{\mathsf{f}}: ilde{\mathcal{A}}
ightarrow ilde{\mathcal{B}}$$
 $(\mathfrak{a},\lambda) \mapsto (\mathsf{f}(\mathfrak{a}),\lambda)$

and thus $\tilde{f}(0,1) = (0,1)$. Now applying the preceeding lemma gives $\sigma(f(a)) \subset \sigma(a)$. Consider $a = a^* \in \mathcal{A}$, then $f(a^*) = f(a)^*$, $f(a) = f(a)^*$ implies f(a) hermitian in $f(\mathcal{A})$. Since f(a) is normal, $\|f(a)\| = r(f(a)) \leq r(a) \leq \|a\|$. For general, $a \in \mathcal{A}$, we have

$$\|f(a)\|^{2} = \|aa^{*}\|^{2} \|f(a)^{*}f(a)\| = \|f(a^{*}a)\| \le \|a^{*}a\| \le \|a^{*}\|\|a\| = \|a\|^{2}$$

since f is a contraction and $||a^*|| = ||a||$.