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Last time Properties of the spectrum
Warm up:

1.47 Question. Relation between spectral radius and C∗-algebra norms.

Let H = Cn, A = B(Cn) n ≥ 2.
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Hence, ⟨aek, ej⟩ = ⟨ek−1, ej⟩ = ⟨ek, ej+1⟩ = ⟨ek, a∗ej⟩ and so a∗ek = ek+1.

a∗


z1
z2
·
·
zn

 =


0

z1
z2
·

zn−1


Also,

(a∗a)


z1
z2
·
·
zn

 =


0

z2
z3
·
zn


hence (a∗a) is an orthogonal projection and since (a∗a) ̸= 0 ∥a∗a∥ = 1 = ∥a∥2 so ∥a∥ = 1.
(Observe that this is why we need n ≥ 2.) However, an = 0 and so am = an+m−n = 0 for all
m ≥ n, hence r(a) = 0 but since σ(a) ̸= ϕ, we have σ(a) ̸= {0}.
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In areas such as numerical analysis, σ(a∗a) is studied not σ(a) to get more information as it
is non-empty.

We revisit the lemma from last time.

1.48 Lemma. Let A be a C∗-algebra. Then

• σ(a∗) = σ(a) = {λ̄ : λ ∈ σ(a)}.

• If a is normal, r(a) = ∥a∥.

• For a ∈ A, ∥a∥ =
√

r(a∗a)

Proof. 1. We know that a − λ1 is invertible in Ã ⇐⇒ (a − λ1)∗ = a∗ − λ̄1 is invertible,
i.e., λ ∈ (σ(a∗))C ⇐⇒ λ ∈ (σ(a))C.

2. If a is normal, a∗a = aa∗ then a2(a2)∗ = aaa∗a∗ = aa∗ aa∗ = a∗aa∗a = a∗a∗aa =
(a∗)2a2, so a2 is also normal. Hence,

∥a2∥2 =︸︷︷︸
C∗alg.

∥a2(a2)∗∥ = ∥∥aa∗aa∗∥

= ∥aa∗(aa∗)∗∥
=︸︷︷︸

C∗alg.

∥aa∗∥2

= ∥a∥4

Taking square roots, we get ∥a2∥ = ∥a∥2, and inductively we have ∥a2n = ∥a∥2n for all
n ∈ N. Thus, considering a subsequence (a2n)of(an) we get

r(a) = lim
n

∥an∥1/n = lim
n

∥a2n∥1/2n = ∥a∥

3. This follows from 2. since a∗a (and aa∗) is normal and so

r(a∗a) = ∥a∗a∥ = ∥a∥2

and thus ∥a∥ =
√

r(a∗a) =
√

r(aa∗).

Next, we investigate how the spectrum behaves under homomorphisms.

1.49 Lemma. Let f : A → B be a homomorphisms between algebras woth unit s.t. f(1A) = 1B,
then for any a ∈ A,

σ(f(a)) ⊂ σ(a)

Note that the left side is a spectrum in B and the right side is a spectrum in A (i.e., we
consider inverses in those algebras respectively).
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Proof. We show equivalently that ρ(a) ⊂ ρ(f(a)) (taking complements). Let λ ∈ C be such
that a− λ1 ∈ G(A), with R = (a− λ1)−1 ∈ A. Applying f to

(a− λ1)R gives f(a− λ1)f(R) = (f(a) − λf(1))f(R) = (f(a) − λ)f(R).

Since (a−λ1)R = 1 =⇒ (f(a)−λ)f(R) = f(1) = 1. Thus f(R) is a right inverse of f(a−λ1).
Similarly (a − λ1)R =⇒ f(R)(f(a) − λ) = f(1) = 1. Thus f(a − λ1)−1 = f(R) ∈ B and
λ ∈ ρ(f(a)). In particular, if A ⊂ B, f = id then σ(a) can only shrink when enlarging the
algebra.

Next, we study what happens when f respects the involution.

1.50 Theorem. Let A be a Banach-∗-algebra, B be a C∗-algebra, and f : A → B be a
homomorphism, i.e., it is a algebra homomorphism, bounded and respects the involution, then f

is a contraction (∥f(a)∥ ≤ ∥a∥, ∀a ∈ A).

Proof. When restricting B to be the closure of the range of f, then the statement on ∥f(a)∥ ≤
∥a∥ is unchanged, so we can assume WLOG f(A) dense in B. If 1 is a unit in A, then f(1)f(a) =
f(a) so f(1) is the id on f(A) and by density of f(A) and continuity of the product f(1)b =
b, ∀b ∈ B. By the C∗-algebra structure of B, (left=right identity) f(1) is a unit in B. If A does
not have a unit, f(A) does not have a unit, so we extend A, B, and f:

f̃ : Ã → B̃

(a, λ) 7→ (f(a), λ)

and thus f̃(0, 1) = (0, 1). Now applying the preceeding lemma gives σ(f(a)) ⊂ σ(a). Consider
a = a∗ ∈ A, then f(a∗) = f(a)∗, f(a) = f(a)∗ implies f(a) hermitian in f(A). Since f(a) is
normal, ∥f(a)∥ = r(f(a)) ≤ r(a) ≤ ∥a∥. For general, a ∈ A, we have

∥f(a)∥2 =︸︷︷︸
C∗alg.

∥aa∗∥2∥f(a)∗f(a)∥ = ∥f(a∗a)∥ ≤ ∥a∗a∥ ≤ ∥a∗∥∥a∥ = ∥a∥2

since f is a contraction and ∥a∗∥ = ∥a∥.
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