Lecture Notes from November 11, 2022

taken by Tanvi Telang

Last time Properties of the spectrum

Warm up:

1.47 Question. Relation between spectral radius and C*-algebra norms.

Let $\mathcal{H}=\mathbb{C}^{n}, \mathcal{A}=\mathbb{B}\left(\mathbb{C}^{n}\right) \mathfrak{n} \geq 2$.

$$
\mathrm{a}\left(\begin{array}{c}
z_{1} \\
z_{2} \\
\cdot \\
\cdot \\
z_{n}
\end{array}\right)=\left(\begin{array}{c}
z_{2} \\
z_{3} \\
\cdot \\
z_{n} \\
0
\end{array}\right),
$$

then for basis elements $e_{1}, e_{2}, \cdots e_{n}$

$$
a e_{1}=a\left(\begin{array}{l}
1 \\
0 \\
\cdot \\
\cdot \\
0
\end{array}\right)=\left(\begin{array}{l}
0 \\
0 \\
\cdot \\
0 \\
0
\end{array}\right), a e_{2}=a\left(\begin{array}{c}
0 \\
1 \\
\cdot \\
\cdot \\
0
\end{array}\right)=\left(\begin{array}{l}
1 \\
0 \\
\cdot \\
0 \\
0
\end{array}\right)=e_{1} \text { and } a e_{k}=e_{k-1} .
$$

Hence, $\left\langle a e_{k}, e_{j}\right\rangle=\left\langle e_{k-1}, e j\right\rangle=\left\langle e_{k}, e_{j+1}\right\rangle=\left\langle e_{k}, a^{*} e_{j}\right\rangle$ and so $a^{*} e_{k}=e_{k+1}$.

$$
a^{*}\left(\begin{array}{c}
z_{1} \\
z_{2} \\
\cdot \\
\cdot \\
z_{n}
\end{array}\right)=\left(\begin{array}{c}
0 \\
z_{1} \\
z_{2} \\
\cdot \\
z_{n-1}
\end{array}\right)
$$

Also,

$$
\left(a^{*} \mathrm{a}\right)\left(\begin{array}{c}
z_{1} \\
z_{2} \\
\cdot \\
\cdot \\
z_{n}
\end{array}\right)=\left(\begin{array}{c}
0 \\
z_{2} \\
z_{3} \\
\cdot \\
z_{n}
\end{array}\right)
$$

hence $\left(a^{*} a\right)$ is an orthogonal projection and since $\left(a^{*} a\right) \neq 0\left\|a^{*} a\right\|=1=\|a\|^{2}$ so $\|a\|=1$. (Observe that this is why we need $n \geq 2$.) However, $a^{n}=0$ and so $a^{m}=a^{n+m-n}=0$ for all $m \geq n$, hence $r(a)=0$ but since $\sigma(a) \neq \phi$, we have $\sigma(a) \neq\{0\}$.

In areas such as numerical analysis, $\sigma\left(a^{*} a\right)$ is studied not $\sigma(a)$ to get more information as it is non-empty.

We revisit the lemma from last time.
1.48 Lemma. Let \mathcal{A} be a C^{*}-algebra. Then

- $\sigma\left(a^{*}\right)=\overline{\sigma(a)}=\{\bar{\lambda}: \lambda \in \sigma(a)\}$.
- If a is normal, $\mathrm{r}(\mathrm{a})=\|\mathrm{a}\|$.
- For $\mathrm{a} \in \mathcal{A},\|\mathrm{a}\|=\sqrt{\mathrm{r}\left(\mathrm{a}^{*} \mathrm{a}\right)}$

Proof. 1. We know that $a-\lambda 1$ is invertible in $\tilde{A} \Longleftrightarrow(a-\lambda 1)^{*}=a^{*}-\bar{\lambda} 1$ is invertible, i.e., $\bar{\lambda} \in\left(\sigma\left(a^{*}\right)\right)^{\mathrm{C}} \Longleftrightarrow \lambda \in(\sigma(a))^{\mathrm{C}}$.
2. If a is normal, $a^{*} a=a a^{*}$ then $a^{2}\left(a^{2}\right)^{*}=\underline{a q a^{*}} a^{*}=\underline{a a^{*}} \underline{a a^{*}}=a^{*} \underline{a a^{*}} a=a^{*} a^{*} a a=$ $\left(a^{*}\right)^{2} a^{2}$, so a^{2} is also normal. Hence,

$$
\begin{aligned}
\left\|a^{2}\right\|^{2} \underbrace{=}_{\mathrm{C}^{*} \text { alg. }}\left\|a^{2}\left(a^{2}\right)^{*}\right\| & =\| \| a a^{*} a a^{*} \| \\
& =\left\|a a^{*}\left(a a^{*}\right)^{*}\right\| \\
& \underbrace{}_{\mathrm{C}^{*} a \lg .} \\
& =\left\|a a^{*}\right\|^{2} \\
& =\|a\|^{4}
\end{aligned}
$$

Taking square roots, we get $\left\|a^{2}\right\|=\|a\|^{2}$, and inductively we have $\left\|a^{2^{n}}=\right\| a \|^{2^{n}}$ for all $n \in \mathbb{N}$. Thus, considering a subsequence $\left(a^{2^{n}}\right)$ of $\left(a^{n}\right)$ we get

$$
r(a)=\lim _{n}\left\|a^{n}\right\|^{1 / n}=\lim _{n}\left\|a^{2^{n}}\right\|^{1 / 2^{n}}=\|a\|
$$

3. This follows from 2. since $a^{*} a$ (and $a a^{*}$) is normal and so

$$
r\left(a^{*} a\right)=\left\|a^{*} a\right\|=\|a\|^{2}
$$

and thus $\|a\|=\sqrt{r\left(a^{*} a\right)}=\sqrt{r\left(a^{*}\right)}$.

Next, we investigate how the spectrum behaves under homomorphisms.
1.49 Lemma. Let $\mathrm{f}: \mathcal{A} \rightarrow \mathcal{B}$ be a homomorphisms between algebras woth unit s.t. $\mathrm{f}\left(1_{\mathcal{A}}\right)=1_{\mathcal{B}}$, then for any $\mathrm{a} \in \mathcal{A}$,

$$
\sigma(f(a)) \subset \sigma(a)
$$

Note that the left side is a spectrum in \mathcal{B} and the right side is a spectrum in \mathcal{A} (i.e., we consider inverses in those algebras respectively).

Proof. We show equivalently that $\rho(a) \subset \rho(f(a))$ (taking complements). Let $\lambda \in \mathbb{C}$ be such that $a-\lambda 1 \in G(\mathcal{A})$, with $R=(a-\lambda 1)^{-1} \in \mathcal{A}$. Applying f to

$$
(a-\lambda 1) R \text { gives } f(a-\lambda 1) f(R)=(f(a)-\lambda f(1)) f(R)=(f(a)-\lambda) f(R)
$$

Since $(a-\lambda 1) R=1 \Longrightarrow(f(a)-\lambda) f(R)=f(1)=1$. Thus $f(R)$ is a right inverse of $f(a-\lambda 1)$. Similarly $(a-\lambda 1) R \Longrightarrow f(R)(f(a)-\lambda)=f(1)=1$. Thus $f(a-\lambda 1)^{-1}=f(R) \in \mathcal{B}$ and $\lambda \in \rho(f(a))$. In particular, if $\mathcal{A} \subset \mathcal{B}, f=$ id then $\sigma(a)$ can only shrink when enlarging the algebra.

Next, we study what happens when f respects the involution.
1.50 Theorem. Let \mathcal{A} be a Banach-*-algebra, \mathcal{B} be a C^{*}-algebra, and $\mathrm{f}: \mathcal{A} \rightarrow \mathcal{B}$ be a homomorphism, i.e., it is a algebra homomorphism, bounded and respects the involution, then f is a contraction $(\|f(a)\| \leq\|a\|, \forall a \in \mathcal{A})$.

Proof. When restricting \mathcal{B} to be the closure of the range of f , then the statement on $\|\mathrm{f}(\mathrm{a})\| \leq$ $\|a\|$ is unchanged, so we can assume WLOG $f(A)$ dense in B. If 1 is a unit in \mathcal{A}, then $f(1) f(a)=$ $f(a)$ so $f(1)$ is the id on $f(\mathcal{A})$ and by density of $f(\mathcal{A})$ and continuity of the product $f(1) b=$ $\mathrm{b}, \forall \mathrm{b} \in \mathcal{B}$. By the C^{*}-algebra structure of \mathcal{B}, (left=right identity) $\mathrm{f}(1)$ is a unit in \mathcal{B}. If \mathcal{A} does not have a unit, $\mathrm{f}(\mathcal{A})$ does not have a unit, so we extend \mathcal{A}, \mathcal{B}, and f :

$$
\begin{gathered}
\tilde{f}: \tilde{\mathcal{A}} \rightarrow \tilde{\mathcal{B}} \\
(a, \lambda) \mapsto(f(a), \lambda)
\end{gathered}
$$

and thus $\tilde{f}(0,1)=(0,1)$. Now applying the preceeding lemma gives $\sigma(f(a)) \subset \sigma(a)$. Consider $a=a^{*} \in \mathcal{A}$, then $f\left(a^{*}\right)=f(a)^{*}, f(a)=f(a)^{*}$ implies $f(a)$ hermitian in $f(\mathcal{A})$. Since $f(a)$ is normal, $\|f(a)\|=r(f(a)) \leq r(a) \leq\|a\|$. For general, $a \in \mathcal{A}$, we have

$$
\|f(a)\|^{2} \underbrace{=}_{\mathrm{C}^{*} \text { alg. }}\left\|a a^{*}\right\|^{2}\left\|f(a)^{*} f(a)\right\|=\left\|f\left(a^{*} a\right)\right\| \leq\left\|a^{*} a\right\| \leq\left\|a^{*}\right\|\|a\|=\|a\|^{2}
$$

since f is a contraction and $\left\|a^{*}\right\|=\|a\|$.

