Lecture Notes from November 10, 2022

taken by Phuong Tran

Last time

- Spectral radius vs norm in C*-algebra.
- Properties of the spectrum under homomorphism, with or without respecting involution.

2.2 Theorem. Let A be a Banach-*-algebra , B a C*-algebra and $f : A \to B$ a homomorphism (bounded, algebra norm, *-preserving), then f is a contraction, i.e $||f(a)|| \le ||a||$ for each $a \in A$

Proof. WOLG B = f(A), we observed f(1) = 1, or if A does not have a unit, we apply this to \tilde{A}, \tilde{B} and achieve f extends to \tilde{f} with $\tilde{f}(1) = 1$.

Consider $b = b^* \in A$, then f(b) is normal

$$\|f(b)\| = r(f(b)) \stackrel{\text{lemma}}{\leq} r(b) \leq \|b\|$$

For general $a \in A$, we have

$$\|\underbrace{f(\mathfrak{a})}_{\in C^*\text{-algebra}}\|^2 = \|f(\mathfrak{a})^* f(\mathfrak{a})\| = \|f(\underbrace{\mathfrak{a}^*\mathfrak{a}}_{\text{Hermitian}})\| \stackrel{\text{replacing } b = \mathfrak{a}^*\mathfrak{a}}{\leq} \|\mathfrak{a}^*\mathfrak{a}\| \le \|\mathfrak{a}^*\| \|\mathfrak{a}\| = \|\mathfrak{a}\|^2$$

2.3 Remark. Without completeness of A and boundedness of f, the conclusion about the set of homomorphisms does not hold.

2.4 Example. Consider the Banach-*-algebra $\ell^1(\mathbb{N})$ and $A = c_{00}$ (sequence with finitely many nonzero elements in $\ell^1(\mathbb{N})$), then c_{00} is a subalgebra of $\ell^1(\mathbb{N})$ with norm and involution (identity).

For each $z \in \mathbb{C}$, we can define

$$\begin{split} \mathsf{f} &: \mathsf{A} \to \mathbb{C} \\ & x \mapsto \sum_{n=1}^\infty x_n \, z^n \end{split}$$

and by A is dense in $\ell^1(\mathbb{N})$ and $(\ell^1(\mathbb{N}))' = \ell^{\infty}(\mathbb{N})$, we have $||f|| = \sup_{n \in \mathbb{N}} |z|^n$. So if |z| > 1, then $||f|| = \infty$. 2.5 Remark. If $B = \mathbb{C}$, we can make a similar statement as in the above statement, but we do not require the presence of involution.

2.6 Theorem. Let A be a Banach algebra, $f : A \to \mathbb{C}$ a homomorphism (in A') then $||f|| \le 1$. If A has a unit and $f \ne 0$ then f(1) = 1, so ||f|| = 1

Proof. Let us assume $\|f\| \ge 1$, then there is $a \in A$ with $\|a\| = 1$ and |f(a)| > 1. So by scaling, let $\alpha = \frac{a}{f(\alpha)}$, we also get $\|\alpha\| = \frac{\|a\|}{|f(\alpha)|} < 1$ and $f(\alpha) = \frac{f(\alpha)}{f(\alpha)} = 1$.

For this α , by completeness of A, $b = \sum_{n=1}^{\infty} \alpha^n \in A$ where the RHS converges (in norm), and by examing the power series, we see

$$\alpha + \alpha b = \alpha + \alpha \sum_{n=1}^{\infty} \alpha^n = \sum_{n=1}^{\infty} \alpha^n = b$$

Applying f gives $f(b) = f(\alpha) + f(\alpha) f(b) = 1 + f(b)$. This is a contradiction, so $||f|| \le 1$.

If A has a unit 1 and $f \neq 0$, then $f(1)^2 = f(1) f(1) = f(1 \cdot 1) = f(1)$ so f(1) = 1, otherwise f(1) = 0. Thus ||f|| = 1 because ||1|| = 1

2.7 Definition. For a complex algebra A, we write Γ_A for the space of all nonzero homomorphisms

$$\chi: A \to \mathbb{C}$$

If A is a Banach algebra, then elements of Γ_A are continuous, hence contractive. We then call Γ_A the spectrum of A

2.8 Remark.

(a) If S is an involutive semigroup and $\ell^1(S)$ the Banach-*-algebra defined with

$$f(s^*) = \overline{f(s^*)}$$
 and $(f * g)(s) = \sum_{\substack{a,b \in S \\ ab=s}} f(a)g(b)$

then we had shown that the *continuous* chracters $\chi : \ell^1(S) \to \mathbb{C}$ come from bounded characters on S by $\chi(f) = \sum_{s \in S} f(s)\gamma(s)$ with $\gamma(s) = \chi(\delta_s)$.

Now we know that all of these are in fact contractive characters.

(b) Let X be locally compact but not compact $A = C_0(X)$. We have shown that each nonzero homomorphism $\chi : A \to \mathbb{C}$ is given by $\chi(f) = f(x)$ for $x \in X$.

To see this, we extend χ to $A \subset C_b(X)$ with $\chi(1) = 1$. Let $\mathcal{N} = \ker(\chi)$, then \mathcal{N} is a closed subspace of \tilde{A} of co-dimension one (by rank-nullity) and $\tilde{A}\mathcal{N} \subset \mathcal{N}$