Functional Analysis Il, Math 7321
Lecture Notes from January 24, 2017

taken by Robert P Mendez

0 Course Information

Text: W. Rudin, Functional Analysis, 2nd edition, McGraw Hill, 1991 (or later).
Office: PGH 604, 713-743-3851, Mo 1-2pm, We 10:30-11:30am

Email: bgb@math.uh.edu

Grade: Based on preparation of class notes in LaTeX, rotating note-takers

Background knowledge: Linear algebra, Real analysis, Lebesgue integration

1 Previous Material

We begin the semester with a brief summary of some of the tools we used or developed last
semester. To facilitate further reading, associated dates for class notes are given in square
brackets; for additional convenience, each such reference is also a hyperlink to (one of) the class
notes for that day.

1.1 Definition (Topological vector space [20 September 2016]). A vector space X together with
a topology 7 is called a topological vector space if

1. for every point = € X, the singleton {x} is a closed set, and

2. the vector space operations

+:XxX =X and o Kx X - X
(x,y) —» x4y (A, z) = Az

are continuous with respect to the product topology on X x X and K x X, respectively.

An important consequence of this definition is that fora € X, T,: A - X, x — xz +ais a
homeomorphism, and so is, for A # 0, M, : x — Az. By the translation invariance of openess,
the toplology is characterized by a filter of neighborhoodd!] of 0.

INB: In the context of the class, we take the neighborhood of a point to be any set containing an open
neighborhood of the point; Rudin, in our main text, uses "neighborhood” to mean "open neighborhood”. Keep
this in mind when interpreting proofs given in the text.


https://www.math.uh.edu/~bgb/Courses/Math7320F16/Math7320-20160920.pdf

1.2 Definition (Types of topological vector spaces [20 September 2016]). We recall that there
are several characteristics that topological vector spaces can have. A topological vector space is
called

locally convex if it has a local base of convex sets.
locally bounded if 0 has a bounded neighborhood.

locally compact if 0 has a compact neighborhood.

an F-space if it is complete and the topology is induced by an invariant metric.

)
)
)
) metrizable if the topology is induced by a metric.
)
) a Fréchet space if X is a locally convex F-space.
)

normable if the topology on X comes from a norm.

1.3 Characterization (Normable topological vector spaces [13 October 2016]). A topological
vector space is normable if and only if it is locally bounded and locally convex.

1.4 Characterization (Locally compact topological vector spaces [4 October 2016]). A topo-
logical vector space X is locally compact if and only if it has finite dimension.

1.5 Remark (Motivation). We note that in cases when it is difficult to prove certain bounded-
ness, convergence or convexity properties directly for a topological vector space X of interest,
considering the underlying set with a coarser topology may provide insight. We illustrate this by
recalling a special case of the weak topologyf| [Defined 17 November 2016]: Let (X, || - ||) be a
normed vector space and X' be the set of all continuous linear functionals on X. Defining X,
to be the set X with the initial topology 7., induced by all elements in X', we call 7, the weak
topology on X.

If dim X = oo, then each U € U(0) contains a nontrivial infinite dimensional subspace
[Proposition 4.2.11, 17 November 2016], from which we discern that the weak topology 7, on
X is not a locally bounded topological vector space. As a result, we have

1.6 Corollary. If (X, || -||) has that dim X = oo, then X # X,,.
We also recall the weak-* topology, which is the initial topology induced by ¢(X) on X’ by
tx): f f(x)forallz e X, f e X',

and that the dual of X, equipped with the weak-x topology is again X. This leads us to a (brief)
study in the role of ¢ for normed spaces.

2This definition of the weak topology for a normed vector space follows from the [10 November 2016]| result
that in a locally convex topological vector space X, the dual space X* of continuous linear functionals separates
points in X.


https://www.math.uh.edu/~bgb/Courses/Math7320F16/Math7320-20160920.pdf
https://www.math.uh.edu/~bgb/Courses/Math7320F16/Math7320-20161013.pdf
https://www.math.uh.edu/~bgb/Courses/Math7320F16/Math7320-20161004.pdf
https://www.math.uh.edu/~bgb/Courses/Math7320F16/Math7320-20161117a.pdf
https://www.math.uh.edu/~bgb/Courses/Math7320F16/Math7320-20161117a.pdf
https://www.math.uh.edu/~bgb/Courses/Math7320F16/Math7320-20161110a.pdf

2 Duality in Banach spaces

We first investigate the relationship between a normed space (X, || - ||) and (X', | - ||} where for
fex,
I/l := sup |f(z)].

=<1

In analogy with Hilbert spaces, we write for x € X and f € X', (f,x) = f(x). We might think
of this apparent abuse of inner product notation as emphasizing the linearity of f; we may further
justify its use by noting that the definition of the respective norms yields | (f,z)| < ||f]|l|z]],
reminiscent of the Cauchy-Schwarz inequality.

2.1 Definition. Let X be a normed space. The mapping ¢ : X — X" = (X’)" defined
(t(x), f) := (f,x) is called the natural inclusion of X' in X"”. Since continuity is equivalent to
boundedness in linear maps, we have the following propostion:

2.2 Proposition. The natural inclusion is a linear, norm-preserving map.

Proof. We note that for each f € X',

| @), ) L= 12 | < ),

and it follows that ||¢(z)]| < ||z||. On the other hand, applying Hahn-Banach,

z|| = max | (f,z) | = max | («(x), f) | < ||¢(x)] max = ||e(z
Joll = mas | (F) | = s | ), )] < o)l 11 = o)
yields that ||¢(z)|| > ||=||, so the norm is preserved. O

2.3 Remark. By this isometry property, ¢ is injective, so it embeds X in X”. However, ¢ is not
necessarily an isometric isomorphism; we give that case a special name:

2.4 Definition. A Banach space X is called reflexive if the natural inclusion ¢ of X in X" is an
isometric isomorphism.

2.5 Remark (1). We note that the definition describes a Banach space, and not the more general
normed space. Since the linear functionals in X’ map into the complete space K =R or C, the
dual space inherits completeness. It follows that the dual of X’ is complete, and so a normed
vector space that is reflexive is therefore complete.

2.6 Remark (2). It is not enough to have that X and X" are isomorphic—reflexivity is a property
of ¢!

We proceed with some easy results in reflexivity.
2.7 Proposition. Every finite dimensional Banach space is reflexive.

2.8 Remark. Since a finite dimensional Banach space is essentially R™ or C™, so is its dual, and
then so is its "double dual”.

3Technically, the norms are || - ||x and || - ||x/. We suppress the subscript with the understanding that context
should make clear which norm is implied.



Proof. Let dim X = n € N. By biorthogonal basis pairs, dim X’ = n, and so follows that
dim X” = n. Since ¢ is norm preserving, it is injective; it follows from rank-nullity, then, that ¢
is surjective, as well. O

We prepare for the next result by recalling a Riesz representation theorem.ﬁ For clarity, since
we are already using (-,-) to indicate functional evaluation, we shall use (-,-)x to indicate the
inner product on the Hilbert space X:

2.9 Theorem (F. Riesz, [Theorem 4.8, ?|). Given Hilbert space H, every x € H induces a
continuous linear functional on H by ¢,(y) = (x,y)y, additionally, we have that ||p.|| = ||z||
for all x € H, and that this mapping of H onto H' is bijective and antilinear, so that
Paztby = A"z + b py.
We note that the antilinearity implies that (z,y); = (©y, ¥z) -
2.10 Proposition. Every Hilbert space H is reflexive.
Proof. Applying the Riesz representation theorerrE] above, let ® and O give the maps
¢:H— H
=, H—=K
y = (2,9)g = ()
and
©:H — H"
o fo,:H — K
V= (fp D)y = (fpn V).

We claim that ¢ := © o ® is the isometric isomorphism we desire.
First, + inherits the norm preservation from the composition. Linearity follows from the factﬂ
that for a,b € K and x,y € H,

f‘Paz+by = fa*Wz+b*Wy = a-ﬁpz + bf‘Py;

To show that ¢« : H — H" is the natural inclusion map, we must show that (:(z),p,) =
(@y, ) for all z,y € H. Rewriting the left-hand side, we have

(L(x), 0y) = (foowr Ly) = (Pas Py) gy = (Y, ) g = {0y, 7)),

completing the proof.

References
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4There are a number of theorems attributed to Frigyes Riesz which are called "the Reisz representation
theorem.” Here, we are specifying which explicitly.

Suggest further reading: Joachim Weidmann's Linear Operators on Hilbert Spaces, Springer-Verlag New York,
1979.

6Alternatively, we gain isomorphism from (@, )y = (Py, 02) g = (fwm,f@y)H,,
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