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0 Course Information

Text: W. Rudin, Functional Analysis, 2nd edition, McGraw Hill, 1991 (or later).

Office: PGH 604, 713-743-3851, Mo 1-2pm, We 10:30-11:30am

Email: bgb@math.uh.edu

Grade: Based on preparation of class notes in LaTeX, rotating note-takers

Background knowledge: Linear algebra, Real analysis, Lebesgue integration

1 Previous Material

We begin the semester with a brief summary of some of the tools we used or developed last
semester. To facilitate further reading, associated dates for class notes are given in square
brackets; for additional convenience, each such reference is also a hyperlink to (one of) the class
notes for that day.

1.1 Definition (Topological vector space [20 September 2016]). A vector space X together with
a topology τ is called a topological vector space if

1. for every point x ∈ X, the singleton {x} is a closed set, and

2. the vector space operations

+ : X ×X → X and · : K×X → X
(x, y) 7→ x+ y (λ, x) 7→ λx

are continuous with respect to the product topology on X ×X and K×X, respectively.

An important consequence of this definition is that for a ∈ X, Ta : A→ X, x 7→ x+ a is a
homeomorphism, and so is, for λ 6= 0, Mλ : x 7→ λx. By the translation invariance of openess,
the toplology is characterized by a filter of neighborhoods1 of 0.

1NB: In the context of the class, we take the neighborhood of a point to be any set containing an open
neighborhood of the point; Rudin, in our main text, uses ”neighborhood” to mean ”open neighborhood”. Keep
this in mind when interpreting proofs given in the text.
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1.2 Definition (Types of topological vector spaces [20 September 2016]). We recall that there
are several characteristics that topological vector spaces can have. A topological vector space is
called

(a) locally convex if it has a local base of convex sets.

(b) locally bounded if 0 has a bounded neighborhood.

(c) locally compact if 0 has a compact neighborhood.

(d) metrizable if the topology is induced by a metric.

(e) an F -space if it is complete and the topology is induced by an invariant metric.

(f) a Fréchet space if X is a locally convex F -space.

(g) normable if the topology on X comes from a norm.

1.3 Characterization (Normable topological vector spaces [13 October 2016]). A topological
vector space is normable if and only if it is locally bounded and locally convex.

1.4 Characterization (Locally compact topological vector spaces [4 October 2016]). A topo-
logical vector space X is locally compact if and only if it has finite dimension.

1.5 Remark (Motivation). We note that in cases when it is difficult to prove certain bounded-
ness, convergence or convexity properties directly for a topological vector space X of interest,
considering the underlying set with a coarser topology may provide insight. We illustrate this by
recalling a special case of the weak topology2 [Defined 17 November 2016]: Let (X, ‖ · ‖) be a
normed vector space and X ′ be the set of all continuous linear functionals on X. Defining Xw

to be the set X with the initial topology τw induced by all elements in X ′, we call τw the weak
topology on X.

If dimX = ∞, then each U ∈ U(0) contains a nontrivial infinite dimensional subspace
[Proposition 4.2.11, 17 November 2016], from which we discern that the weak topology τw on
X is not a locally bounded topological vector space. As a result, we have

1.6 Corollary. If (X, ‖ · ‖) has that dimX =∞, then X 6= Xw.

We also recall the weak-∗ topology, which is the initial topology induced by ι(X) on X ′ by

ι(x) : f 7→ f(x) for all x ∈ X, f ∈ X ′,

and that the dual of X ′, equipped with the weak-∗ topology is again X. This leads us to a (brief)
study in the role of ι for normed spaces.

2This definition of the weak topology for a normed vector space follows from the [10 November 2016] result
that in a locally convex topological vector space X, the dual space X∗ of continuous linear functionals separates
points in X.
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2 Duality in Banach spaces

We first investigate the relationship between a normed space (X, ‖ · ‖) and (X ′, ‖ · ‖)3, where for
f ∈ X ′,

‖f‖ := sup
‖x‖≤1

|f(x)|.

In analogy with Hilbert spaces, we write for x ∈ X and f ∈ X ′, 〈f, x〉 ≡ f(x). We might think
of this apparent abuse of inner product notation as emphasizing the linearity of f ; we may further
justify its use by noting that the definition of the respective norms yields | 〈f, x〉 | ≤ ‖f‖‖x‖,
reminiscent of the Cauchy-Schwarz inequality.

2.1 Definition. Let X be a normed space. The mapping ι : X → X ′′ ≡ (X ′)′ defined
〈ι(x), f〉 := 〈f, x〉 is called the natural inclusion of X ′ in X ′′. Since continuity is equivalent to
boundedness in linear maps, we have the following propostion:

2.2 Proposition. The natural inclusion is a linear, norm-preserving map.

Proof. We note that for each f ∈ X ′,

| 〈ι(x), f〉 | = | 〈f, x〉 | ≤ ‖f‖‖x‖,

and it follows that ‖ι(x)‖ ≤ ‖x‖. On the other hand, applying Hahn-Banach,

‖x‖ = max
‖f‖≤1

| 〈f, x〉 | = max
‖f‖≤1

| 〈ι(x), f〉 | ≤ ‖ι(x)‖ max
‖f‖≤1

‖f‖ = ‖ι(x)‖

yields that ‖ι(x)‖ ≥ ‖x‖, so the norm is preserved.

2.3 Remark. By this isometry property, ι is injective, so it embeds X in X ′′. However, ι is not
necessarily an isometric isomorphism; we give that case a special name:

2.4 Definition. A Banach space X is called reflexive if the natural inclusion ι of X in X ′′ is an
isometric isomorphism.

2.5 Remark (1). We note that the definition describes a Banach space, and not the more general
normed space. Since the linear functionals in X ′ map into the complete space K = R or C, the
dual space inherits completeness. It follows that the dual of X ′ is complete, and so a normed
vector space that is reflexive is therefore complete.

2.6 Remark (2). It is not enough to have that X and X ′′ are isomorphic–reflexivity is a property
of ι!

We proceed with some easy results in reflexivity.

2.7 Proposition. Every finite dimensional Banach space is reflexive.

2.8 Remark. Since a finite dimensional Banach space is essentially Rn or Cn, so is its dual, and
then so is its ”double dual”.

3Technically, the norms are ‖ · ‖X and ‖ · ‖X′ . We suppress the subscript with the understanding that context
should make clear which norm is implied.
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Proof. Let dimX = n ∈ N. By biorthogonal basis pairs, dimX ′ = n, and so follows that
dimX ′′ = n. Since ι is norm preserving, it is injective; it follows from rank-nullity, then, that ι
is surjective, as well.

We prepare for the next result by recalling a Riesz representation theorem.4 For clarity, since
we are already using 〈·, ·〉 to indicate functional evaluation, we shall use (·, ·)X to indicate the
inner product on the Hilbert space X:

2.9 Theorem (F. Riesz, [Theorem 4.8, ?]). Given Hilbert space H, every x ∈ H induces a
continuous linear functional on H by ϕx(y) = (x, y)H ; additionally, we have that ‖ϕx‖ = ‖x‖
for all x ∈ H, and that this mapping of H onto H ′ is bijective and antilinear, so that

ϕax+by = a∗ϕx + b∗ϕy.

We note that the antilinearity implies that (x, y)H = (ϕy, ϕx)H′ .

2.10 Proposition. Every Hilbert space H is reflexive.

Proof. Applying the Riesz representation theorem5 above, let Φ and Θ give the maps

Φ : H → H ′

x 7→ ϕx :H → K
y 7→ (x, y)H ≡ 〈ϕx, y〉

and

Θ : H ′ → H ′′

ϕ 7→ fϕ :H ′ → K
ϑ 7→ (fϕ, ϑ)H ≡ 〈fϕ, ϑ〉 .

We claim that ι := Θ ◦ Φ is the isometric isomorphism we desire.
First, ι inherits the norm preservation from the composition. Linearity follows from the fact6

that for a, b ∈ K and x, y ∈ H,

fϕax+by
= fa∗ϕx+b∗ϕy = afϕx + bfϕy ;

To show that ι : H ↪→ H ′′ is the natural inclusion map, we must show that 〈ι(x), ϕy〉 =
〈ϕy, x〉 for all x, y ∈ H. Rewriting the left-hand side, we have

〈ι(x), ϕy〉 = 〈fϕx , ϕy〉 = (ϕx, ϕy)H′ = (y, x)H = 〈ϕy, x〉 ,

completing the proof.

References

Weidmann, Joachim, Linear Operations in Hilbert Spaces, Springer-Verlag New York, 1980.

4There are a number of theorems attributed to Frigyes Riesz which are called ”the Reisz representation
theorem.” Here, we are specifying which explicitly.

5Suggest further reading: Joachim Weidmann’s Linear Operators on Hilbert Spaces, Springer-Verlag New York,
1979.

6Alternatively, we gain isomorphism from (x, y)H = (ϕy, ϕx)H′ =
(
fϕx

, fϕy

)
H′′
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