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Recall that a topological space is separable if it has a countable dense set. In this note, we
are going to characterize a separable Banach space. First, we give some examples of Banach
spaces which is not separable.

2.11 Examples. ., the set of bounded sequences with a norm |[|(x,,)|| = sup;cy |Zx|, is @ Banach
space. But, it is not separable.

Proof. It is well known that [, is Banach space for any 1 < p < co. We only prove that [, is not
separable. Let B = {(2,)32, : @, € {—1,1}} C l. Then, B is uncountable and ||(z,)—(y,)|| =
SUp,en [Tn — yn| = 2 for any distinct pair (z,,), (yn) € B. Thus, Bi((z,)) N B1((yn)) = 0 for
any distinct (z,), (y,) € B. Let D be a dense set in . Thus, for any (z,) € B, there is at
least one element in D is in By((z,)). Since each By((x,)) is disjoint from others, D must be
uncountable as same as B. This shows [, is not separable. O

More generally, L, the space of bounded (a.e.) measurable functions, is not separable.

Next, we provide an example of reflexive Banach spaces. Recall that a Banach space X is
reflective if the canonical embedding of X in X” is an isometric isomorphism.

2.12 Examples. The space ¢, where 1 < p < oo is reflexive. To show ¢, is reflexive, we
first show 6;7 and ¢, are isometrically isomorphic if % + % =1, 1<p< o0 Letax €,
then by Holder's inequality, [(y,2)| = |> ey Un®n| < |[yllqllx]/p, where the series converges
absolutely /unconditionally, so this defines a continuous linear functional f, : y — (y,z) on
¢,. Moreover, equality is assumed in Holder's inequality, so the map = — f, = (-,x) is an
isometry. Conversely, for each f € ¢/, let y be the sequence with entries y,, = f(e,), (€n)m

0, otherwise
series converges absolutely, which can be seen by taking z,,| f(e,)| = |z,|f(e,). We leave showing
that ||y||, < oo as exercise.
Using the identification £, ~ /, twice gives ¢, ~ (7. Moreover, by the above the map
i: x> (-, ) defines an isomorphism between £, and (7.

1, ifn=
{ T en for each = € {4 by linearity and continuity, f(x) = >, .y ¥n®, and the

2.A Quotient Space

2.13 Definition. Let V' be a vector space and M a linear subspace. We say x,y € V are
equivalent modulo M if x —y € M. The set of all equivalent classes is called Quotient space
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V/M and denote the equivalent class with representative x € V' as
2] ={yeX:y—xe M} =x+ M.

2.14 Examples. e Let m,n € N. Define M = {(x1,...,21,0,...,0) : 1, ..., x,, € R}. Then,
M is a subspace of R™*™ and R™" /M = {[0,0,...,0, %1, ..., Yn] : Y1, .-, Yo € R}. Thus,
R™*" /M is isomorphic to R".

e In general, if a vector space V is a direct sum ot subspaces M and N, i.e., V=M N.
Then, V/M is isomorphic to N and V/N is isomorphic to M.

From the definition, by defining [z] + [y] = [z +y] and A - [z] = [Az] for z,y € V and A € R,
with these two operations, the quotient space is also a vector space. In addition, if V' is a normed
space and M is closed linear subspace, then

— inf [z —
l#llx/ar = Inf flz —y]

defined a norm in V/M. Thus, V/M is also a normed and we state this fact as following.
2.15 Proposition. Equipped with || - ||x ., the quotient space X /M becomes a normed space.

Proof. Let [z],[2'] € X and A € K. Then,

lA2]ll = inf JAx =yl = inf |Ae =yl = |A] inf o —y| = [All|{=]]]

Also, if ||[x]|] = 0, then inf e ||z — y|| = 0. We have a sequence (y,,) in M converging to
x. Since M is closed, € M. Thus, [x] = M. Finally, ||[z + 2']|| = infyenm |z + 2" — y|| =

infyen [[(z —y)+ (2" —y)|| < infyenm([[(z—y)l|+][(z"=y)I]) < infyen [[(z—y)||+infyenr [|(2"—
) = [|[z]]] + ||[']||. Therefore, || - || is a norm. 0

The next proposition was proved from the last semester. Thus, we will only sketch the proof
of this proposition.

2.16 Proposition. If B is a Banach space and M is a closed subspace of B, then B/M is a
Banach space.

Proof. Let ([x,]) be a Cauchy sequence in B/M. We can choose y,, € B which y,, € [z,] and
(yn) is a Cauchy sequence in B. Thus, ¥, converges to y € B. Then, we can show that [z,,]
converges to [y]. Therefore, B/M is a Banach space. O

There is natural map ¢ : V' — V/M which maps an element in V' to its equivalent class i.e.,
q(z) = [z]. We call ¢ a quotient map. One interesting property of this map is that it maps the
unit open ball on V' onto the unit open ball on V/M.

2.17 Proposition. If X is a normed space and M be a sub space, then q : X — X/M maps
the (open) unit ball onto the unit ball in X /M.



Proof. Let x € X. We have

lg(2)|lx/ar = inf [ly[lx < |z]|.
y€[]

So, ¢ maps the ball in X into the one in X/M. Next, we want to show ¢(B;*(0)) = Bf(/M(O).
Let y € Bf(/M(O). Then, 1 > |ly||x/m = infgepy [|z||x. So, thereis x € X, m € M such that

|z +m||x < 1. Hence, g(z + m) = y and there is z + m € B;*(0) that maps to y. O

From the previous proposition, the quotient map maps the unit open ball onto the unit open
ball. Conversely, if we have a linear map T : X — Y which maps the unit open ball on a normed
space X onto the unit ball on a normed space Y, then Y is isometrically isomorphic to X/ ker T
and thus 7" can be considered as a quotient map from X — Y.

2.18 Proposition. Let X,Y be normed spaces. Let T : X — Y be a linear map onto Y, and
assume BiX(0) is mapped onto B} (0), then Y is isometrically isomorphic to X/kerT.

Proof. Let [x] = {z +y :y € ker T} and define ¢ : X/kerT — Y by q(z) = T'(x). Then
q is linear and surjective. Moreover, q is injective because ¢([z]) = 0 implies = € kerT i.e.,
[z] = ker T' = [0]. Hence, ¢ is bijection mapping open ball to the open ball. The same holds for
g ' From |l¢|| <1and |l¢7! <1, |l¢ll = |l¢g7*|| = 1. Next, we have

2]/ kerr = lla™ (a([2]) 1x/xerr < lla(2D)lly < 2]/ kerr-
Thus, ||¢([z])]] = ||[x]]|, i-e., ¢ is isometric isomorphism. O

2.19 Lemma. Let B be a Banach space and A a dense set in B,.(0), then every x € B,(0) can
be expressed as x = ) 2° | \jx; where z; € A and Y77, |\j| < 1.

Proof. Without loss of generality, let 7 = 1. Take # € B;(0). Choose 6 > 0 such that (1 +

d)||z|| < 1. Fixe > 0 and let x; € A be such that ||(1+d)x — z1]| < e. From H%H <1,
there is z9 € A with
140z —=x
(NSRRI By P
£
Next, we take x5 € A for which
14+ 6)x —x —
H( +9)z 2351 £X —373H .
£
So,
(14 8)x — 1 — exy — %a3| < 2.
Continuing inductively gives
1
- =1,
=15 Za‘ ;.
7=1
Setting \; = % gives > 7 [\ = m. Choose ¢ sufficeiently small, ||A||; < 1. O



The following is our main goal in this lecture. We have proved important facts and will use
them to characterize a separable Banach space.

2.20 Theorem. Every separable Banach space B is isometrically isomorphic to a quotient space
of ll.

Proof. Take (z,) to be dense in B,(0). Let T": [; — B defined by T'(c) = >~ ¢;x; for c € ;.
Then, by Minkowski's inequality, [|T'(c)|| < >°72, |ej| = [lell- So, |T|| < 1. By the preceding
lemma, T(B}(0)) = BE(0). So, B is isomorphic to I,/ ker T'. O

Next, we relate maps on Banach spaces to maps on their duals.

2.21 Definition. Let X,Y be normed spaces and 7' € B(X,Y), the set of all bounded linear
maps. We define the adjoint map 77 : Y/ — X’ as

<T(f),x>=<f,T(x) >,
foreachx € X and f € Y.
2.22 Remark. The definition above is well defined since for f € Y/, T'f € X’, and we obtain

| < L T() > [ < ATl < LA
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