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Recall that a topological space is separable if it has a countable dense set. In this note, we
are going to characterize a separable Banach space. First, we give some examples of Banach
spaces which is not separable.

2.11 Examples. l∞, the set of bounded sequences with a norm ‖(xn)‖ = supi∈N |xn|, is a Banach
space. But, it is not separable.

Proof. It is well known that lp is Banach space for any 1 ≤ p ≤ ∞. We only prove that l∞ is not
separable. Let B = {(xn)∞n=1 : xn ∈ {−1, 1}} ⊆ l∞. Then, B is uncountable and ‖(xn)−(yn)‖ =
supn∈N |xn − yn| = 2 for any distinct pair (xn), (yn) ∈ B. Thus, B1((xn)) ∩ B1((yn)) = ∅ for
any distinct (xn), (yn) ∈ B. Let D be a dense set in l∞. Thus, for any (xn) ∈ B, there is at
least one element in D is in B1((xn)). Since each B1((xn)) is disjoint from others, D must be
uncountable as same as B. This shows l∞ is not separable.

More generally, L∞, the space of bounded (a.e.) measurable functions, is not separable.

Next, we provide an example of reflexive Banach spaces. Recall that a Banach space X is
reflective if the canonical embedding of X in X ′′ is an isometric isomorphism.

2.12 Examples. The space `p where 1 < p < ∞ is reflexive. To show `p is reflexive, we
first show `′p and `q are isometrically isomorphic if 1

p
+ 1

q
= 1, 1 < p < ∞. Let x ∈ `p,

then by Hölder’s inequality, |〈y, x〉| = |
∑

n∈N ynxn| ≤ ‖y‖q‖x‖p, where the series converges
absolutely/unconditionally, so this defines a continuous linear functional fx : y 7→ 〈y, x〉 on
`q. Moreover, equality is assumed in Hölder’s inequality, so the map x 7→ fx ≡ 〈·, x〉 is an
isometry. Conversely, for each f ∈ `′q, let y be the sequence with entries yn = f(en), (en)m ={
1, if n = m

0, otherwise
then for each x ∈ `q by linearity and continuity, f(x) =

∑
n∈N ynxn and the

series converges absolutely, which can be seen by taking xn|f(en)| = |xn|f(en). We leave showing
that ‖y‖q <∞ as exercise.

Using the identification `′p ' `q twice gives `p ' `′′p. Moreover, by the above the map
i : x 7→ 〈·, x〉 defines an isomorphism between `p and `′′p.

2.A Quotient Space

2.13 Definition. Let V be a vector space and M a linear subspace. We say x, y ∈ V are
equivalent modulo M if x − y ∈ M . The set of all equivalent classes is called Quotient space
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V/M and denote the equivalent class with representative x ∈ V as

[x] = {y ∈ X : y − x ∈M} = x+M.

2.14 Examples. • Let m,n ∈ N. Define M = {(x1, ..., xm, 0, ..., 0) : x1, ..., xm ∈ R}. Then,
M is a subspace of Rm+n and Rm+n/M = {[0, 0, ..., 0, y1, ..., yn] : y1, ..., yn ∈ R}. Thus,
Rm+n/M is isomorphic to Rn.

• In general, if a vector space V is a direct sum ot subspaces M and N , i.e., V =M
⊕

N.
Then, V/M is isomorphic to N and V/N is isomorphic to M .

From the definition, by defining [x] + [y] = [x+ y] and λ · [x] = [λx] for x, y ∈ V and λ ∈ R,
with these two operations, the quotient space is also a vector space. In addition, if V is a normed
space and M is closed linear subspace, then

‖x‖X/M = inf
y∈M
‖x− y‖

defined a norm in V/M. Thus, V/M is also a normed and we state this fact as following.

2.15 Proposition. Equipped with ‖ · ‖X/M , the quotient space X/M becomes a normed space.

Proof. Let [x], [x′] ∈ X and λ ∈ K. Then,

‖[λx]‖ = inf
y∈M
‖λx− y‖ = inf

y∈M
‖λx− λy‖ = |λ| inf

y∈M
‖x− y‖ = |λ|‖[x]‖.

Also, if ‖[x]‖ = 0, then infy∈M ‖x − y‖ = 0. We have a sequence (yn) in M converging to
x. Since M is closed, x ∈ M . Thus, [x] = M . Finally, ‖[x + x′]‖ = infy∈M ‖x + x′ − y‖ =
infy∈M ‖(x−y)+(x′−y)‖ ≤ infy∈M(‖(x−y)‖+‖(x′−y)‖) ≤ infy∈M ‖(x−y)‖+infy∈M ‖(x′−
y)‖) = ‖[x]‖+ ‖[x′]‖. Therefore, ‖ · ‖ is a norm.

The next proposition was proved from the last semester. Thus, we will only sketch the proof
of this proposition.

2.16 Proposition. If B is a Banach space and M is a closed subspace of B, then B/M is a
Banach space.

Proof. Let ([xn]) be a Cauchy sequence in B/M . We can choose yn ∈ B which yn ∈ [xn] and
(yn) is a Cauchy sequence in B. Thus, yn converges to y ∈ B. Then, we can show that [xn]
converges to [y]. Therefore, B/M is a Banach space.

There is natural map q : V → V/M which maps an element in V to its equivalent class i.e.,
q(x) = [x]. We call q a quotient map. One interesting property of this map is that it maps the
unit open ball on V onto the unit open ball on V/M .

2.17 Proposition. If X is a normed space and M be a sub space, then q : X → X/M maps
the (open) unit ball onto the unit ball in X/M.

2



Proof. Let x ∈ X. We have

‖q(x)‖X/M = inf
y∈[x]
‖y‖X ≤ ‖x‖.

So, q maps the ball in X into the one in X/M . Next, we want to show q(BX
1 (0)) = B

X/M
1 (0).

Let y ∈ BX/M
1 (0). Then, 1 > ‖y‖X/M = infx∈[y] ‖x‖X . So, there is x ∈ X,m ∈ M such that

‖x+m‖X < 1. Hence, q(x+m) = y and there is x+m ∈ BX
1 (0) that maps to y.

From the previous proposition, the quotient map maps the unit open ball onto the unit open
ball. Conversely, if we have a linear map T : X → Y which maps the unit open ball on a normed
space X onto the unit ball on a normed space Y , then Y is isometrically isomorphic to X/ kerT
and thus T can be considered as a quotient map from X → Y .

2.18 Proposition. Let X, Y be normed spaces. Let T : X → Y be a linear map onto Y , and
assume BX

1 (0) is mapped onto BY
1 (0), then Y is isometrically isomorphic to X/ kerT.

Proof. Let [x] = {x + y : y ∈ kerT} and define q : X/ kerT → Y by q(x) = T (x). Then
q is linear and surjective. Moreover, q is injective because q([x]) = 0 implies x ∈ kerT i.e.,
[x] = kerT = [0]. Hence, q is bijection mapping open ball to the open ball. The same holds for
q−1. From ‖q‖ ≤ 1 and ‖q−1‖ ≤ 1, ‖q‖ = ‖q−1‖ = 1. Next, we have

‖x‖X/ kerT = ‖q−1(q([x]))‖X/ kerT ≤ ‖q([x])‖Y ≤ ‖[x]‖X/ kerT .

Thus, ‖q([x])‖ = ‖[x]‖, i.e., q is isometric isomorphism.

2.19 Lemma. Let B be a Banach space and A a dense set in Br(0), then every x ∈ Br(0) can
be expressed as x =

∑∞
j=1 λjxj where xj ∈ A and

∑∞
j=1 |λj| < 1.

Proof. Without loss of generality, let r = 1. Take x ∈ B1(0). Choose δ > 0 such that (1 +

δ)‖x‖ < 1. Fix ε > 0 and let x1 ∈ A be such that ‖(1+ δ)x−x1‖ < ε. From ‖ (1+δ)x−x1
)

ε
‖ < 1,

there is x2 ∈ A with ∥∥∥((1 + δ)x− x1
)

ε
− x2

∥∥∥ < ε.

Next, we take x3 ∈ A for which∥∥∥(1 + δ)x− x1 − εx2
ε2

− x3
∥∥∥ < ε.

So,
‖(1 + δ)x− x1 − εx2 − ε2x3‖ < ε3.

Continuing inductively gives

x =
1

1 + δ

∞∑
j=1

εj−1xj.

Setting λj =
εj−1

1+δ
gives

∑∞
j=1 |λj| =

1
(1+δ)(1−ε) . Choose ε sufficeiently small, ‖λ‖1 < 1.
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The following is our main goal in this lecture. We have proved important facts and will use
them to characterize a separable Banach space.

2.20 Theorem. Every separable Banach space B is isometrically isomorphic to a quotient space
of l1.

Proof. Take (xn) to be dense in B1(0). Let T : l1 → B defined by T (c) =
∑∞

j=1 cjxj for c ∈ l1.
Then, by Minkowski’s inequality, ‖T (c)‖ ≤

∑∞
j=1 |cj| = ‖c‖. So, ‖T‖ ≤ 1. By the preceding

lemma, T (Bl1
1 (0)) = BB

1 (0). So, B is isomorphic to l1/ kerT .

Next, we relate maps on Banach spaces to maps on their duals.

2.21 Definition. Let X, Y be normed spaces and T ∈ B(X, Y ), the set of all bounded linear
maps. We define the adjoint map T ′ : Y ′ → X ′ as

< T ′(f), x >=< f, T (x) >,

for each x ∈ X and f ∈ Y ′.

2.22 Remark. The definition above is well defined since for f ∈ Y ′, T ′f ∈ X ′, and we obtain

| < f, T (x) > | ≤ ‖f‖‖Tx‖ ≤ ‖f‖‖T‖‖x‖.
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