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Last Time

• Duality and Closed range

• Towards a characterization of surjectivity of T in terms of T ′

Review: Injectivity vs. Invertibility
Given X, Y be normed spaces,

(i) Let T ∈ B(X, Y ), if T is injective and surjective (i.e. bijective) with the inverse in B(Y,X),
then T is invertible.
(ii) If T ∈ B(X, Y ) is invertible, from the definition, we know that there exists S ∈ B(Y,X)
such that ST = IX , TS = IY . Then T is one-to-one and ∃δ > 0, BY

δ ⊂ T (BX
1 ). We have a

consequence that ∃δ > 0:
inf
‖x‖=1

‖Tx‖ > δ

So T is injective. Note that the norm bound is a consequence of invertibility, T does not need
to be surjective, it is a weaker property.

We recall ran(T ) is dense in Y if and only if ran(T )⊥ = {0}; in that case, ker(T ′) =
ran(T )⊥ = {0}. We have

ran(T ) = (ker(T ′))⊥ = Y.

So ran(T ) is dense in Y if and only if T ′ is injective.

2.59 Problem. Can we find the condition for ran(T ) = Y in terms of T ′?

Suppose X and Y are Banach spaces, and T ∈ B(X, Y ), then ran(T ) = Y if and only if T ′

is injective and ran(T ′) is norm-closed.
Warm-up:

Let X and Y are Banach spaces,
(i) If T ∈ B(X, Y ) is invertible, then T ′ : Y ′ → X ′ is invertible.

Proof. If IX and IY are the identity mappings on X and Y , respectively, then their duals mappings
are the same as the identity mappings IX′ and IY ′ on X ′ and Y ′, respectively. Thus

T−1 ◦ T = IX ,
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and
T ◦ T−1 = IY

we get that
T ′ ◦ (T−1)′ = (T−1 ◦ T )′ = IX′ ,

and
(T−1)′ ◦ T ′ = (T ◦ T−1)′ = IY ′

So (T ′)−1 ∈ B(X ′, Y ′) and (T ′)−1 = (T−1)′. Hence, T ′ is invertible.

(ii) If T ′ is invertible, T is invertible.

Proof. From T ′ is invertible, we have T ′′ : X ′′ → Y ′′ is invertible.
Consider the natural (Canonical) map i : X → X ′′, i(x)(f) = f(x) for x ∈ X, f ∈ X ′.
Clearly ‖i(x)‖ 6 ‖f‖ and, by the Hahn-Banach theorem, equality holds. Frequently, X is
identified with i(X), then X is regarded as a subspace of X ′′.
This mapping is isometric and therefore bounded:

‖i(x)‖ = sup
f∈SX′

|i(x)(f)| = sup
f∈SX′

|f(x)| = ‖x‖

for every vector x ∈ X. This implies that i is injective: If i(x) = 0, then ‖x‖ = ‖i(x)‖ = 0, and
therefore x = 0.
Notice that X is isometrically isomorphic to the image i(X) of X under the natural (canonical)
embedding: X ∼= i(X).
If X is reflexive, then X is thus isometrically isomorphic to X ′′ via the natural embedding. This
means that any linear functional F ∈ X ′′ has the form F = i(x) for some vector x ∈ X, i.e.,
F (f) = f(x) for every linear functional f ∈ X ′.
Thus, if X and Y are reflexive, then it is easy to see that T ′′ corresponds exactly to T under
the natural isomorphisms between X and X ′′ and Y and Y ′′, and hence that T is invertible.
Otherwise, T corresponds to the restriction of T ′′ to the image of the natural embedding of X
into X ′′, which takes values in the image of the natural embedding of Y in Y ′′. This implies that

‖T (x)‖Y > δ‖x‖X

for some δ > 0, and every x ∈ X, because of the analogous condition for T ′′ that follows from
invertibility.
From ran(T ) = (ker(T ′))⊥, we know that T (X) is dense in Y if and only if T ′ is injective. X is
complete, we have T (X) is complete as well. So T (X) is a closed linear subspace of Y . If T ′ is
invertible, then ker(T ′) = {0}, so that T (X) is dense in Y . Thus we get that T (X) = Y under
these conditions, because T (X) is both dense and closed in Y . This shows that T : X → Y is
invertible when T ′ : Y ′ → X ′ is invertible, as desired.

2.60 Proposition. Given T ∈ B(X, Y ), and T ′ is invertible, then T satisfies

inf
‖x‖=1

‖Tx‖ > 0.
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Proof. We know from T ′ invertible, then T ′′ : X ′′ → Y ′′ is invertible, so T ′′ satisfies

inf
‖x′′‖=1

‖T ′′x′′‖ > 0.

(From above warm-up (ii), we know that for T ∈ B(X, Y ), T ′ is invertible, then T is invertible.)
By i(X) ⊂ X ′′, T ′′|i(X)

∼= T , so T satisfies the norm bound.

We had stated:

2.61 Theorem. If X and Y are Banach spaces, let T ∈ B(X, Y ), then the following assertions
are equivalent:
(1) ran(T ) is closed in Y .
(2) ran(T ′) is weak-∗ closed in X ′.
(3) ran(T ′) is closed in X ′.

Proof. (2) ⇒ (3) was proved last time.
We prove (1) ⇒ (2). Assume (1) holds, then we know

ker(T )⊥ = {f ∈ X ′ : f(x) = 0 for each x ∈ ker(T )}

=
⋂

x∈ker(T )

{f ∈ X ′ : f(x) = 0} (we have i(x)(f) = 0)

=
⋂

x∈ker(T )

ker i(x) (weak- ∗ closed)

=
⋂

x∈ker(T )

ker i(x)
w∗

= ker(T )⊥
w∗

By generalized rank-nullity,

ker(T )⊥ = ran(T ′) = ran(T ′)
w∗

.

It is left to show ker(T )⊥ ⊂ ran(T ′).
Let f ∈ ker(T )⊥. Define g on ran(T ) by g(Tx) = 〈f, x〉. This is well defined because if
Tx = Tx′, then x− x′ ∈ ker(T ), so 〈f, x− x′〉 = 0 and 〈f, x〉 = 〈f, x′〉.
Using the open mapping theorem, T : X → ran(T ) is onto a complete space since ran(T ) is

closed, so T is open, hence there is δ > 0, such that T (BX
1 ) ⊃ B

ran(T )
δ and for g defined above

|g(y)| = |g(Tx)| = |〈f, x〉| 6 ‖f‖‖x‖ 6 1

δ
‖f‖‖y‖.

Hence g is continuous on the range of T and extends by Hahn Banach to G on Y ′. Thus,

〈G, Tx〉 = g(Tx) = 〈f, x〉

for x ∈ X.
Thus, T ′G = f . Since f was arbitrary in ker(T )⊥, we see ker(T )⊥ ⊂ ran(T ′). By continuing
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inclusions, ker(T )⊥ = ran(T ′). Thus, ran(T ′) is weak-∗ closed.
Finally, we show (3) ⇒ (1). Let Z = ran(T ). Let S ∈ B(X,Z), Sx = Tx, then ran(S) = Z,
so S ′ : Z ′ → X ′ is injective by ker(S ′)⊥ = ran(S).
For f ∈ Z ′, we get by Hahn Banach F in Y ′ such that for each x ∈ X,

〈T ′F, x〉 = 〈F, Tx〉 = 〈f, Sx〉 = 〈S ′f, x〉

so S ′f = T ′F , ran(S ′) = ran(T ′).
By assumption on ran(T ′) being closed, so is ran(S ′) and hence ran(S ′) is complete, so by
the open mapping theorem, for S ′ : Z ′ → ran(S ′) there is δ > 0 such that for each h ∈ Z ′,
‖S ′h‖ > δ‖h‖. Hence, by our warm-up exercise, S : X → Z is open as well, so S(X) = Z, but
ran(T ) = ran(S), so ran(T ) = Z is closed in Y .

We are ready to characterize surjectivity of T .

2.62 Theorem. Let X, Y be Banach spaces, T ∈ B(X, Y ), then ran(T ) = Y if and only if
there is δ > 0 such that ‖T ′f‖ > δ‖f‖ for all f ∈ Y ′.

Proof. We know that T is surjective if and only if ran(T ) is dense and (norm) closed in Y .
By the closed range characterization, we have that ran(T ) is dense in Y if and only if T ′ is
injective.
So it is equivalent to T is surjective if and only if T ′ being injective and ran(T ) (norm) closed
in Y . The closedness of ran(T ), in turn, is equivalent to T ′ being norm bounded below.
Thus, ran(T ) = Y if and only if T ′ is injective and ran(T ′) is norm-closed.
(a) We know T ′ is injective. By the open mapping theorem there is δ > 0 such that

{y ∈ Y | ‖y‖ 6 δ} ⊂ {T (x) | ‖x‖ 6 1}.

Then for a functional f ,

‖T ′f‖ = sup{|(T ′f)(x)| | ‖x‖ 6 1}
= sup{|f(Tx)| | ‖x‖ 6 1}
> sup{|f(y)| | ‖y‖ 6 δ}
= δ‖f‖.

We claim that given this inequality, ran(T ′) is closed.
(b) By Theorem 1.2.2, ran(T ) is closed. And it is dense, so ran(T ) = Y.

4


