Last Time: Spectrum of multiplication operators and complemented subspaces.

3.B More Examples of Complemented Subspaces

3. Every closed subspace E in a Hilbert space is complemented by E^\perp.

4. If
 \[H^p = \text{span}\{e^{2\pi inx}\}_{n=0}^{\infty} \in L^p([0,1]), \text{ } 1 < p < \infty, \]
 then H^p is complemented by
 \[\text{span}\{e^{2\pi inx}\}_{n<0} \]

It will be shown that projections do in fact provide an equivalent formulation of complemented subspaces.

3.20 Definition. An operator $P \in B(X)$ is a projection if $P^2 = P$.

3.21 Claim. $\ker P = \text{ran}(I - P)$.

Proof. If $Px = 0$, then $x = x - Px = (I - P)x$, and so if $x \in \ker P$, then $x \in \text{ran}(I-P)$. Conversely, if $y = (I - P)x$, then
\[Py = P(I - P)x = (P - P^2)x = Px - Px = 0. \]
So if $y \in \text{ran}(I - P)$, then $y \in \ker P$. \hfill \Box

The following two theorems are the equivalent formulation of complemented subspaces provided by projections; the first theorem is the ”easy” direction of such equivalence and part of the second is its converse.

3.22 Theorem. If P is a projection, then $\text{ran} P$ is closed and complemented by $\ker P$.
Proof. Let \(Q = I - P \). Then \(Q \) is a projection, \(\ker Q = \text{ran}(I - Q) \) by the previous claim, and \(\text{ran}(I - Q) = \text{ran}P \). Moreover, \(\text{ran}P \) is complemented by \(\ker P = \text{ran}(I - P) \) because if \(x \in \text{ran}P = \ker(I-P) \) and \(x \in \ker \), then
\[
0 = (I - P)x = x.
\]
Finally, for any \(z \in X \), \(z \) is given by
\[
z = Pz + (I - P)z
\]
where \(Pz \in \text{ran}P \) and \((I - P)z \in \ker P \). \(\square \)

3.23 Theorem. A closed subspace \(E \) of \(X \) is complemented if and only if there is a projection \(P \in B(x) \) such that \(P^2 = P \) with \(E = \text{ran}P \).

Proof. If there is a projection, then by the theorem above, \(E = \text{ran}P \) is complemented. Conversely, let \(F \) be a complementary subspace to \(E \). If \(z \in X \), with \(x \in E \) and \(y \in F \) being unique, one can write \(z = x + y \). Let \(Pz = x \), then by uniqueness, this is a well-defined linear map. Also, \(\text{ran}P = E \) because if \(x \in E \) and \(0 \in F \), then
\[
x = x + 0 \Rightarrow Px = x.
\]
Moreover,
\[
P^2z = P(Pz) = Px = x = Pz, \quad Pz \in \text{ran}P.
\]
Hence, \(P^2 = P \).

To show \(P \in B(X) \), consider the graph of \(P \in X \oplus X \) with norm \(||(z, x)|| = ||z|| + ||x|| \), and let \((z_n, x_n) \to (z, x) \). Then \(z_n = x_n + y_n \) where for each \(n \in \mathbb{N} \), \(x_n \in E \) and \(y_n \in F \). So, \(Pz_n = x_n \to x \in E \) by \(\overline{E} = E \). Consequently, \(y_n = z_n - x_n \to z - x \in F \) since \(F \) is closed. Thus, \(z = x + (z - x) \) and \(Pz = x \). Therefore, the limit is in the graph of \(P \) and hence \(P \) has a closed graph. Using the Closed Graph theorem, \(P \) is bounded. \(\square \)

Complemented subspaces can also be used to study weak forms of invertiblity. Given Banach spaces \(X \) and \(Y \), if \(T \in B(X, Y) \), then \(T \) is said to be **left-invertible** if there is \(S \in B(Y, X) \) such that \(ST = I_X \).

3.24 Theorem. Let \(X \) and \(Y \) be Banach spaces and \(T \in B(X, Y) \). Then \(T \) is left-invertible if and only if \(T \) is injective and \(\text{ran}T \) is closed and complemented.

Proof. If \(T \) is injective and \(\text{ran}T \) is closed and complemented, then taking \(P \) as the projection onto \(\text{ran}T \),
\[
T_0 = P \circ T : X \to \text{ran}T
\]
is a projection onto a Banach space, so it is invertible by the open mapping theorem [W. Rudin, Theorem 2.11, (1)]. Hence, if \(S = T_0^{-1}P \), then \(ST = T_0^{-1}PT = I_X \) where \(PT = T_0 \). Therefore, \(T \) is left-invertible. On the other hand, if \(S \in B(Y, X) \) is such that \(ST = I_X \), then \(T \) is injective and
\[
(TS)^2 = (TS)(TS) = T(ST)S = TS.
\]
So, TS is a projection with $\text{ran}(TS) \subset \text{ran}T$, but

$$\text{ran}T = \text{ran}(TST) \subset \text{ran}(TS)$$

and hence $\text{ran}T = \text{ran}(TS)$. Therefore, $\text{ran}T$ is the range of the projection that is closed and complemented. \hfill \square

A second look at the result on ergodicity; recall that to show $A_n x = \frac{1}{n} \sum_{j=1}^{n} T^j x \rightarrow T x$, one must assume power boundedness, $\sup_{n \in \mathbb{N}} ||T^n|| < \infty$.

3.25 Proposition. If $T \in B(X)$ is power bounded, then $r(T) \leq 1$.

Proof. From $||T^n|| \leq C$, one gets

$$\lim_{n \to \infty} ||T^n||^{\frac{1}{n}} \leq \lim_{n \to \infty} C^{\frac{1}{n}} = 1.$$

It was shown that $\overline{T} x = \lim_{n \to \infty} A_n x = y$ with $T y = y$, equivalently, $y \in \ker(I - T)$. Conversely, if $y \in \ker(I - T)$, then $A_n y = y$ for each $n \in \mathbb{N}$, so $\overline{T} y = y$. Therefore, $\overline{T}(X) = \ker(I - T)$. \hfill \square

One can also characterize the kernel of \overline{T}. From the statement on complementary projection, the $\ker\overline{T} = \text{ran}(I - \overline{T})$.

3.26 Corollary. If T is as above, then the spaces $E = \ker T$ and $F = \text{ran} T$ are complementary and $F = \ker(I - T)$.

References