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Warm-up: Finite rank operators are operators whose range is finite dimensional. In the
settings of a Hilbert space H, if T is a linear operator on H then T is finite rank (rank-n) if and
only if there exist v1, v2, ..., vn and e1, e2, ...en such that

Tx =
n∑
i=1

〈x, vi〉ei

To see this, consider dimranT = n and choose e1, e2, ...en to be an Orthonormal Basis of ranT .
Then

Tx =
n∑
i=1

〈Tx, ei〉ei =
n∑
i=1

〈x, T ∗ei〉ei

The converse is also true. Thus, the rank one operators, whose action can be described as
Tx = 〈x, v〉e for some v and e, are the building blocks for the construction of finite rank
operators.

Now, given a normed space X, what does a finite rank operator look like? For simplicity, let’s
study a rank-one operator, i.e. an operator T ∈ B(X) such that dimran(T ) = 1. Choosing
any y ∈ ran(T ) \ {0}, by definition of ran(T ), there exists some x ∈ X such that Tx = y and
x /∈ kerT . Now, pick a g ∈ X ′ such that g(y) = 1. Then, for the operator S : X −→ X defined
as Sx = T ′(g)(x)y, using the specific choices of y and g that we made, we have

Sx = T ′(g)(x)y

= g(Tx)y (by def of T ′)

= 1 · y (by assumption)

= Tx (by assumption)

thus, S has the same kernel as T . Moreover, 1 = dim(ranT ) = dim(X) − dim(kerT ), i.e.
kerT has co-dimension 1 and thus is complemented. So, by uniqueness of the analysis of any
vector in X into components from kerT and from a complement space of kerT , considering
(T ′g)(x) = g(Tx) and (T ′h)(x) = h(Tx) = 0 for all h ∈ {y}⊥, we have characterized T ′, and
this determined T uniquely.

To treat the rank − r case, consider y ∈ ran(T ) \ {0} and g as above, let

S = T − (g ◦ T )y

and show, by induction, that dimran(S) ≤ r − 1.
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Compact Operators

Finite rank operators in B(X) are understood via Jordan form. Can we generalize the Jordan
block form in infinite dimensions? To address this question we introduce the concept of a
compact operator, which will serve as a natural generalization of a finite-rank operator in infinite
dimensions.

3.27 Remark. We recall that

1. If V is a normed space and the closed unit ball B1(0) is a compact neighborhood of 0, then
dimV <∞.

2. In a metric space, a set A is compact if and only if it is sequentially compact, while this in
turn is equivalent to A being complete and totally bounded (i.e. for any ε > 0 there exists
a finite ε-net in A).

3. If in a metric space a set A is totally bounded, then so is A.

4. If M is a compact metric space, A ⊂ C(M) is sequentially compact if and only if A is
closed, bounded and equicontinuous, i.e. for ε > 0 there exists δ > 0 such that for all
x, y ∈M with d(x, y) < δ and f ∈ A we have |f(x)− f(y)| < ε.

3.28 Definition. Let X, Y be Banach spaces. A (bounded) linear map T : X −→ Y is compact

if T (BX
1 (0)) is compact in Y 1.

3.29 Remarks. 1. Recall that, a subset of a complete metric space is totally bounded if and only
if it is relatively compact (i.e. its closure is compact). Thus, the linear map T : X −→ Y ,
between the Banach spaces X and Y , is compact if T (BX

1 (0)) is totally bounded.

2. By equivalence of sequential and compactness, if {xn}∞n=1 is bounded in X, then {Txn}
has a convergent subsequence.

3. If T (BX
1 (0)) is compact and ran(T ) is infinite dimensional, then ran(T ) cannot contain

BY
ε (0) for all ε > 0, otherwise T (BX

1 (0)) would be a compact neighborhood of 0.

The next result allows us to enlarge the set of compact operators from what we know it to
be.

3.30 Theorem. Let X, Y, Z be Banach.

(a) If T ∈ B(X, Y ) is finite rank, then it is compact.
If T ∈ B(X, Y ) is compact, then ran(T ) cannot contain infinite-dimensional closed sub-
spaces.

(b) If T1, T2 are compact and c ∈ K then T1 + cT2 is compact.

(c) If T ∈ B(X, Y ) is compact and S ∈ B(Y, Z) then ST is compact.

(d) If S ∈ B(Y, Z) is compact and T ∈ B(X, Y ) then ST is compact.

1alternatively, one might say that T (BX
1 (0)) is relatively compact in Y
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(e) If T ∈ B(X, Y ) is compact and invertible then dimX = dimY <∞

(f) If V is closed subspace of X and T ∈ B(X, Y ) is compact, then T
∣∣
V
∈ B(V, Y ) is

compact.

(g) If T ∈ B(X, Y ) is compact, then ran(T ) is separable.

(h) If {Tn}∞n=1, where each Tn is compact and Tn −→ T in operator norm, then T is compact.

The converse of (h) is reffered to as the Compact Approximation Property (CAP), and does
not hold for Banach spaces in general. It might also be worth noting here that, the limit of finite-
rank operators between Banach spaces is again always a compact operator. But once more, the
converse, also known as the Aproximation Property (AP), though true for Hilbert spaces, does not
hold for general Banach spaces2. For example `p for p 6= 2 as well as c0 contain closed subspaces
that do not satisfy this property. Furthermore, Willis in 1992 presented the construction3 of a
Banach space that does not have the AP even though it has the CAP, proving that CAP does
not imply the AP.

Now, before we proceed with the proof of the Theorem’s properties, let’s first use them to
construct some examples of compact operators.

3.31 Examples. (1) Let X = Y = `p and a ∈ c0. Define Ma as

Ma(x1, x2, ...) = (a1x1, a2x2, ...)

so that
||Ma|| ≤ sup

n∈N
|an| <∞

Also, for n ∈ N, let Tn be defined as

Tn(x1, x2, ..., xn, xn+1, ...) = (a1x1, a2x2, ..., anxn, 0, 0, ...)

Then Tn is a finite rank operator, hence compact by (a). Furthermore

||Ma − Tn|| ≤ sup
m>n
|am|

n→∞−→ 0

thus, by (h), Ma ia also compact.
(2) Compact operators arose in the theory of integral equations, since integral operators pro-

vide concrete examples of such operators. Approximation by finite-rank operators is an essential
tool in the numerical solution of such equations. The concept of a Fredholm operator is in-
troduced in these settings. Let X = Y = C([0, 1]), equipped with the max − norm, and let
G ∈ C([0, 1]2). Let the Fredholm operator associated with G be

(Tf)(x) =

∫ 1

0

G(x, y)f(y)dy

2Banach stated this problem in his book (1932) and it remained an un-solved problem for quite a few years,
until the Swedish mathematician Per H. Enflo published the first counterexample in 1973.

3the construction is based on results of Grothendieck who did significant work in this area during his, hopeless,
effort to prove that the AP holds for Banach spaces in general.
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Observe how this operator can be perceived as a generalization of linear mappings (matrices) in
infinite dimensions4.
Now, if G(x, y) = F (x)H(y) for F,H ∈ C([0, 1]), then dimran(T ) ≤ 1, so the corresponding
T is rank-one and thus compact.
If G(x, y) =

∑r
j=1 Fj(x)Hj(y), then T is rank-r, hence compact.

By Stone-Weierstrass, any G ∈ C([0, 1]2) can be approximated uniformly by (polynomial) func-
tions of this type, thus T is approximated in norm by finite-rank Fredholm operators. Hence, T
is compact.

(3) Let X = Y = L2([0, 1]), G ∈ L2([0, 1]2) and T defined as above (in (2)). Then, for any
f ∈ L2([0, 1]2) we have

||Tf ||22 =
∫
[0,1]

|Tf(x)|2dx

=

∫
[0,1]

|
∫
[0,1]

G(x, y)f(y)dy|2dx

C.S

≤
∫
[0,1]

(∫
[0,1]

|G(x, y)|2dy
)(∫

[0,1]

|f(y)|2dy
)
dx

= ||G||22||f ||22

4if we consider G as being an n× n matrix, then the operation of G acting on some n-dimensional vector x
can be written as

Gx(i) =

n∑
j=1

G(i, j)x(j)

which is an obvious discrete analogue of the Fredholm operator we defined
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