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3.C Normal operators

3.53 Definition. Let H be a Hilbert space over C and let T ∈ B(H).

1. T is normal if T ∗T = TT ∗, or equivalently if 〈T ∗Tx, x〉 = 〈TT ∗x, x〉 for all x ∈ H, or
equivalently if ‖Tx‖2 = ‖T ∗x‖2 for all x ∈ H.

2. T is self-adjoint if T = T ∗, or equivalently if

〈Tx, x〉 = 〈T ∗x, x〉 = 〈x, Tx〉 = 〈Tx, x〉,

for all x ∈ H.

3.54 Theorem. Let H be a Hilbert space over C and let T ∈ B(H) be normal.

(a) For every c ∈ C, T − cI is normal, and if T is invertible, T−1 is also normal.

(b) If a 6= b and x, y ∈ H with Tx = ax, Ty = by, then 〈x, y〉 = 0.

(c) r(T ) = ‖T‖.

Proof. (a) We have

(T − cI)(T − cI)∗ = (T − cI)(T ∗ − cI)
= TT ∗ − cT ∗ − cT + |c|2I
= T ∗T − cT ∗ − cT + |c|2I
= (T ∗ − cI)(T − cI)
= (T − cI)∗(T − cI),

where we used the fact that TT ∗ = T ∗T . Hence T − cI is normal. Next, if T is invertible,
(T−1)∗ = (T ∗)−1, and so

T−1(T−1)∗ = T−1(T ∗)−1 = (T ∗T )−1

= (TT ∗)−1 = (T ∗)−1T−1

= (T−1)∗T−1
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that T−1 is normal.
(b) Starting from the fact that Ty = by if and only if T ∗y = by we have

0 = ‖(T − bI)y‖ = ‖(T − bI)∗y‖ = ‖(T ∗ − bI)y‖,

and so y is an eigenvector of T ∗ with corresponding eigenvalue b. Next,

a〈x, y〉 = 〈Tx, y〉 = 〈x, T ∗y〉
= 〈x, by〉 = b〈x, y〉,

and so (a− b)〈x, y〉 = 0. But, a 6= b, so 〈x, y〉 = 0.
(c) We have

‖T 2‖ = ‖(T ∗)2T 2‖
1
2

= ‖(T ∗T )∗(T ∗T )‖
1
2

= ‖T ∗T‖
= ‖T‖2,

where we have used the C∗-identity and normality. So by iterating the above process we get
‖T 2n‖ = ‖T‖2n and thus

r(T ) = lim
n→∞

‖T 2n‖
1
2n = lim

n→∞
‖T‖ = ‖T‖,

which completes the proof.

3.55 Definition. Let H be a Hilbert space over C and T ∈ B(H). Also let M be a subspace
of H. We say M reduces T if T (M) ⊂M and T (M⊥) ⊂M⊥.

3.56 Lemma. Let H be a Hilbert space and T ∈ B(H). Also let M be a closed subspace of H
and P an orthogonal projection with range M . Then,

(a) T (M) ⊂M if and only if PTP = TP , or equivalently if and only if T ∗(M⊥) ⊂M⊥. Also
T (M⊥) ⊂M⊥ if and only if PTP = PT , or equivalently if and only if T ∗(M) ⊂M .

(b) M reduces T if and only if PT = TP , or equivalently if and only if M reduces T ∗.

Proof. Let x ∈ H and write x = y1 + y2 and Ty1 = z1 + z2 with y1, z1 ∈ M and y2, z2 ∈ M⊥.
We have

PTPx = PTy1 = z1 ∈M

and TPx = Ty1 = z1+z2. Thus, PTP = TP if and only if TPx = z1 ∈M . Hence, TPx ∈M
for all x ∈ H if and only if T (M) ⊂M .

Next, I−P is the orthogonal projection onto M⊥, so repeating the previous argument implies
T ∗(M⊥) ⊂ M⊥ if and only if (I − P )T ∗(I − P ) = T ∗(I − P ), or equivalenty if and only if
PT ∗P = PT ∗, or equivalently, by taking adjoints on both sides, if and only if PTP = TP .
(B) By definition, M reduces T if T (M) ⊂ M and T (M⊥) ⊂ M⊥, which by (a) is true if and
only if PTP = TP and PTP = PT , or equivalently if and only if TP = PT .
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Nest, we deduce properties of normal operators.

3.57 Theorem. Let H be a Hilbert space over C and T ∈ B(H) be normal. Also let M be a
closed subspace of H. Then,

(a) for every c ∈ C, ker(T − cI) reduces T and T ∗.

(b) If M reduces T , then T |M and T |M⊥ are normal operators on M and M⊥, respectively,
and

‖T‖ = max{‖T |M‖, ‖T |M⊥‖}.

Proof. (a) We take x ∈ ker(T − cI) and notice that

(T − cI)Tx = T (T − cI)x = 0,

since T and T − cI commute. Thus, Tx ∈ ker(T − cI). Similarly,

(T − cI)T ∗x = T ∗(T − cI)x = 0,

since T is normal. So T ∗x ∈ ker(T − cI). Thus, ker(T − cI) reduces T and T ∗.
(b) Note that (T |M)∗ = T ∗|M and

T |M(T |M)∗ = T |MT ∗|M = TT ∗|M
= T ∗T |M = T ∗|MT |M
= (T |M)∗(T |M),

by normality. So T |M and T ∗|M are normal. Similarly, T |M⊥ and T ∗|M⊥ are normal.
Next, let a := max{‖T |M‖, ‖T |M⊥‖}. Then, since ‖T |M‖ ≤ ‖T‖ and ‖T |M⊥‖ ≤ ‖T‖, we

have a ≤ ‖T‖. On the other hand and for x = y + z with y ∈M , z ∈M⊥, we have

‖x‖2 = ‖y‖2 + ‖z‖2,

by the Pythagorean theorem. Since M reduces T , Ty ∈M and Tz ∈M⊥ and so the Pythagorean
theorem once again gives

‖Tx‖2 = ‖Ty‖2 + ‖Tz‖2

≤ ‖T |M‖2‖y‖2 + ‖T |M⊥‖2‖z‖2

≤ max{‖T |M‖2, ‖T |2M⊥‖2}(‖y‖2 + ‖z‖2)
= max{‖T |M‖2, ‖T |2M⊥‖2}‖x‖2,

which means ‖T‖ ≤ a.

3.58 Theorem. Let H be a Hilbert space over C and let T ∈ B(H) be compact and normal.
For any c ∈ σ(T ), let Pc be the orthogonal projection onto to Hc = ker(T − cI). Choosing
|c1| ≥ |c2| ≥ |c3| ≥ . . ., we have

T =
∞∑
i=1

ciPi,

with the series converging in norm.
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Proof. We have already proved that for T ∈ B(H) normal and for a and b distinct eigenvalues,
we have ker(T − aI) ⊥ ker(T − bI). Moreover, we know that for T compact, every eigenvalue
corresponds to a finite dimensional eigenspace. For N ∈ N, we set M :=

∑N
i=1Hci and notice

that the previous theorem implies that M reduces T , but also
∑N

i=1 ciPi. We then notice that

(
∑N

i=1 ciPi)|M⊥ = 0 and that (T −
∑N

i=1 ciPi)|M = 0. Consequently, again by the previous
theorem, the fact that |cn| is decreasing, and part (c) of theorem 3.53, we conclude∥∥∥∥∥T −

N∑
i=1

ciPi

∥∥∥∥∥ = max

{∥∥∥∥∥(T −
N∑
i=1

ciPi)|M

∥∥∥∥∥ ,
∥∥∥∥∥(T −

N∑
i=1

ciPi)|M⊥

∥∥∥∥∥
}

= max{0, ‖T |M⊥‖}
= ‖T |M⊥‖
= |cN+1|,

Letting N →∞ completes the proof.
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