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Last time, we discussed the space of test functions D({2) on a nonempty open set {2 C R",
and considered a topology on it which was metrizable but not complete. We then proposed a
new topology 7 on D(f2), and will eventually show that 7 is complete but not metrizable. First,
we must prove that 7 is in fact a topology.

For convenience, we recall the definition of 7.

4.6 Definition. Let Q # () be open in R™. For each compact K C 2 let 7x denote the topology
of the Fréchet space Dk C D(f2). Let /3 be the collection of convex, balanced sets W C D(Q2)
such that D N W € 7, for every compact K C 2. Define 7 to be the collection of unions of
sets of the form ¢ + W with W € g and ¢ € D(Q).

4.7 Theorem. The collection T is a topology on D(2) with local base 3. Equipped with T,
D(QY) becomes a locally convex topological vector space.

Proof. Clearly ) € 7. Also, D(2) N Dk = D € 7k for all compact K C Q. Because D(2) is
trivially convex and balanced, we see D(2) € 7. We also have that 7 is stable under arbitrary
unions by definition, so it only remains to show 7 is closed under finite intersections.

Take Vi, Vo € 7, and ¢ € V1N V5. Since B C 7, if we can find W € g with o+ W C ViNV;
then we will be done. For i = 1,2, since V; € 7, we know there exists some ¢; € D({2) and
W; € B such that ¢ € ¢, + W, C V.

Let K be such that Dy contains ¢, ¢1,and ¢5. By Dy N W, open in 7k, there is a §; > 0
sucuh that ¢ — ¢; € (1 — §;)W, for i = 1,2. So by convexity of W,

¢ — i+ oW, C (1= 6)W; +6;W; =W,

Letting W = 6; W7 N d, W5, we see that W is convex, balanced, in 3, and ¢ + W C V; N V5.
Thus V1 NV, € 7. Therefore 7 is a topology on D((2).

Moreover, the same argument with V; = V5 for any V; € 7 with 0 € V] shows that there is
W c V; with W € 3. So 3 is a local base.



Next, we must show that (D(f2),7) is a topological vector space. By our definitions from
9/20, this entails showing that singletons are closed, the vector space operations are continuous
with respect to 7.

Given ¢ € D(Q), let ¢' # ¢ and define W = {¢p € D(Q) : po(¢) < po(¢p — ¢')}. Then
W € B, and by the triangle inequality we see ¢ & ¢/ + W. Thus {¢} is closed.

Lastly, it remains to show the vector space operations are continuous. For this, take a, g € K
and ¢, ¢p € D(£2). For any W € 3, there is a § > 0 such that d¢, € %W Choosing ¢ > 0 such
that 2¢(|ag| + d) = 1 gives that if | — ag| < § and ¢ — ¢y € cW, then:

(o — ap)o € %W, (6 — 60) € aclW C (Jag| + )W = %W

1 1
= ad — aodo = (¢ — ¢o) + Pl — ) € §W+§W:W
By setting a = ay = 1 we see that vector addition is continuous, and by setting ¢y = ¢
we see that scalar multiplication is continuous. Thus (D(2),7) is a topological vector space.

Moreover, (D(f2), 7) is locally convex because (3 is a convex local base (see definition of local
convexity on 9/20). O

4.B Properties of Dy

Before we discuss the properties of the topology 7 on D(f2), we review some properties of Dy,
where K C ) is compact. First, we show a characterization of boundedness.

4.8 Proposition. A subset E € Dy is bounded iff each seminorm py is bounded.

Proof. Recall that Dy may be identified with a subspace of C*°(2), where C*°(Q2) is endowed
with the metrizable locally convex topology induced by the seminorms {py }nen discussed last
time. This proposition then follows from Theorem 11.5.1 in the notes for 10/11. O

Next, we investigate the relationship between the Cauchy property in Dy and the seminorms
that induced the topology.

4.9 Proposition. If (¢;);cn is a Cauchy sequence in Dy, then for each fixed N € N, lim; j_,oc pn(¢i—
;) = 0.
Proof. Recall that the collection B of all finite intersections of sets of the form {¢ € C*>(Q) :
pn(¢) < =} for N,m € N is a convex balanced local base for C>(£2). Because py < py+1
for all N € N, we see that B = {¢ € C(Q) : pn(¢) < =} where m € N (no need to take
intersections). Since Dy is a subspace of C*°(2), B N Dk forms a local base for Dy

Now let (¢;);en be Cauchy in Dy. Fix N € N, then for any m € N, by the Cauchy property
there exists an M € N such that ¢; — ¢; € {¢p € Dk : pn(9) < %} for all 4,7 > M. So
we have pn(¢p; — ¢;) < % for all i,7 > M. Since m € N was arbitrary, we conclude that
lim; j o0 P (@5 — @5) = 0. O



The next proposition gives a characterization of convergent sequences in Dg. Note that by
translation invariance, it is enough to consider sequences which converge to 0.

4.10 Proposition. A sequence (¢;)icn in Dy converges to zero iff for each o € (Z§)™, D*¢; — 0
in C(K) (i.e., in sup norm).

Proof. First, suppose we have a sequence (¢;);en in Dy that converges to zero. Since Dy
is a closed subspace of C(12), we see that ¢; — 0 in C(Q) as well. Let a € (ZJ)" be
a multi-index, and choose N € N such that |o| < N and K C Ky. For a fixed m € N,
V ={¢ e C>Q):pn(¢) < =} is an open neighborhood of 0 in C>(12). Since ¢; — 0, there
exists some M € N such that ¢; € V for all i > M.

Note that py(¢) < + implies that max{|D7¢(z)| : = € Ky, |o] < N} < &, which
means that |D*¢(z)| < = for all z € Ky. Since K C Ky, we have that for all 1 > M,
sup,c | D*¢i(x)| < =. Since m € N was arbitrary, we conclude that || D¥;|su, — 0.

Conversely, suppose that D*®; — 0 in sup norm for all & € (Z§)". Then for any m € N and
N €N, there is some M € N such that |[D*@;||sup < = for all @ with |a| < N, and all i > M.
Choosing N such that K C Ky, we then see that for i > M, py(¢;) < % By the monotonicity
of the seminorms py, we conclude that ¢; — 0. [

The above properties help to show the next, more important one: that the Heine-Borel
property holds in D

4.11 Proposition. If E C Dy is closed and bounded, then E is compact.

Proof. Suppose EF C Dy is closed and bounded. Then for each N € N there is My > 0 such
that py(¢) < My for each ¢ € E (again by Theorem 11.5.1). Thus |D,¢| < My on K for
all a with |a] < N. Hence if 3 € (Z$)" is such that |3] < N — 1, then {DP¢ : ¢ € E} is
equicontinuous (by uniform boundedness). So by closedness, boundedness, and equicontinuity
we have {D’¢ : ¢ € E} is compact for each fixed /3.

This means that, given a sequence (¢;);cn, We can select successive subsequence so that
(D@5, )ken converges uniformly for each fixed . Since there are only finitely many a with
|a] < N, after passing to only finitely many subsequences we form a subsequence that converges
with respect to 7. Hence E is sequentially compact, hence compact by metrizability of Dy. [

To conclude our discussion of Dy, we show that it is complete.

4.12 Proposition. Dy is complete.

Proof. Let (¢;)ien be a Cauchy sequence in Dy. Let E = {¢; : i € N}. Then E is closed, and
also bounded since E is (by the Cauchy property). So by above, E is compact. Since (¢;)icn is
in E, we see that there exists a convergent subsequence {¢i, }ren. Since (¢;)ien was Cauchy, it
must converge to limy_, ¢, . O



4.C Properties of (D(Q2),7)

With the above properties of Dy in mind, we begin to establish properties of the topological
vector space (D(Q2), 7).

4.13 Theorem.
(a) A convex balanced subset V' of D(Q2) is open iff V € (.
(b) Tk is the trace topology induced by T in D().

(c) If E is bounded in D(2), then E C Dy for some compact K C X, and for each N € N
there is My < oo such that for every ¢ € E, pn(¢) < My.

(d) D(Q2) has the property that closed and bounded sets are compact.

Proof. (a): Let V € 7. Consider K C 2, K compact, and ¢ € Dx N V. Then there is a
W € B such that ¢ + W C V, hence ¢ + D N W C Dg N'V. By definition, this means that
Dk NV € 1k. If in addition V is convex and balanced, then V' € 3 by the definition of .

We will continue this proof next time. O]



