Lecture Notes from January 24, 2023

taken by Cristian Meraz

1.1 Last week

- "Highlights" from last term:
 - representation theory
 - spectral theory
 - the Gelfand transform
- Connectedness and Banach algebras.

Recall: For a Banach algebra \mathcal{A} with unit, G(A) is the group of invertible elements of \mathcal{A} and G_0 is the connected component of the identity. Then since G_0 is a normal subgroup of G(A), we defined the quotient group $\Lambda_{\mathcal{A}} = G(A)/G_0$, and called it the *index group* of \mathcal{A} .

1.2 Warm-up

Let X be a compact Hausdorff space, and $\mathcal{A} = C(X)$. Then

$$G(A) = \{ f \in \mathcal{A} : f(x) \neq 0 \text{ for all } x \in X \}.$$

Because \mathcal{A} is abelian, we deduce that $G_0 = e^{\mathcal{A}}$. Then if $f \in G_0$, we have $f = e^g$ for some continuous function g on X. Moreover we can define a function $g_{\lambda}(x) = e^{\lambda g(x)}$ that interpolates continuously between $g_0(x) = 1$ and $g_1(x) = f$; thus, 1 and f are *homotopic*. Conversely, if f is homotopic to 1, then $f \in G_0$. This shows that G_0 is concretely given by the class of functions homotopic to any constant non-zero function.

Similarly, $f_1 \sim f_2$ (f_1 and f_2 are in the same connected component) if they are homotopic. Namely, f_1 and f_2 belonging to the same coset of Λ_A is equivalent to f_1 and f_2 being homotopic.

See 2.16 on page 35 in ([Dou91]) for more on this.

Next, we revisit the definition of the spectrum using two familiar examples.

1.3 Examples

Let $\mathbb{T} = \{z \in \mathbb{C} : |z| = 1\}$, $e_n(z) = z^n$ for $n \in \mathbb{Z}$, $\mathcal{P} = \text{Span}\{e_n\}_{n=0}^N$, and $\mathcal{T} = \text{Span}\{e_n\}_{n=-N}^N$. We call \mathcal{P} and \mathcal{T} the spaces of (analytic) polynomials and trigonometric polynomials, respectively. Then in the case of the trig. polynomials, the Banach algebra obtained from closure in the supremum norm is $\mathcal{A} \equiv \overline{\mathcal{T}}^{\infty} = C(\mathbb{T})$ and the spectrum is $\Gamma_{\mathcal{A}} = \mathbb{T}$. To see why this is true, note that $\chi \in \Gamma_{\mathcal{A}} \Rightarrow \chi(e_1) = z$ and $\chi(e_n) = z^n$, and these stay bounded if and only if $|z| \leq 1$. Moreover, $\chi(e_{-n}) = z^{-n}$ stays bounded if and only if $|z| \geq 1$, so it must be that |z| = 1. Hence, $\chi(e_1) = z \in \mathbb{T}$, and for $\tau \in \mathcal{T}$, $\chi(\tau) = \tau(z)$. We conclude that the elements in $\Gamma_{\mathcal{A}}$ are the "point evaluations", $\chi = \delta_z$, and \mathcal{T} is dense in $C(\mathbb{T})$ by the Stone-Weierstraß theorem.

Now write $\mathcal{A} = \overline{\mathcal{P}}^{\infty}$. We (only) get continuous homomorphisms for $|z| \leq 1$, and they are point evaluations, $\chi(p) = p(z)$, as for $C(\mathbb{T})$. Hence, we can consider $\Gamma_{\mathcal{A}}$ as point evaluations of analytic polynomials on $\mathbb{D} \equiv \{z \in \mathbb{C} : |z| \leq 1\}$.

See 2.50 on page 47 in ([Dou91]) for more on this.

This identification of $\Gamma_{\mathcal{A}}$ as \mathbb{D} is useful for invertibility:

 $f \in C(X)$ is invertible $\iff f(x) \neq 0$ for all $x \in X$

Thus f(z) = z is NOT invertible in $\overline{\mathcal{P}}^{\infty}$ because f(0) = 0 and δ_0 is in the spectrum!

Takeaway: If someone gives you a commutative algebra, look at its spectrum to learn about invertibility.

As another brief example, note that the spectrum of the (noncommutative) algebra \mathcal{A} of $n \times n$ matrices with complex entries is $\Gamma_{\mathcal{A}} = \emptyset$. I.e., there are no nontrivial continuous homomorphisms on \mathcal{A} . Thus, we may not learn anything from looking at the spectrum.

1.4 Commutative C*-Algebras and the Gelfand Transform

We start with a lemma.

1.6 Lemma. Let \mathcal{A} be a C^{*}-algebra, and $\mathfrak{a} \in \mathcal{A}$ Hermitian. Then $\sigma(\mathfrak{a}) \subset \mathbb{R}$.

Proof. Without loss of generality, suppose \mathcal{A} has a unit; otherwise, we adjoin one. Let $\alpha + i\beta \in \sigma(\alpha)$ with $\alpha, \beta \in \mathbb{R}$. We show that $\beta = 0$.

For all $\lambda \in \mathbb{R}$, $\alpha + i(\beta + \lambda) \in \sigma(\alpha + i\lambda 1)$, and by comparing the norm with its spectral radius, we have $|\alpha + i(\beta + \lambda) \leq ||\alpha + i\lambda 1|| \iff \alpha^2 + (\beta + \lambda)^2 \leq ||\alpha + i\lambda||^2$, hence

$$\begin{split} \alpha^2 + (\beta + \lambda)^2 &= \|a + \lambda 1\| \|a - \lambda 1\| \quad (a \in \mathcal{A} \text{ is Hermitian}) \\ &= \|(a + \lambda 1)(a - \lambda 1)\| \quad (\mathcal{A} \text{ is a } C^*\text{-alg.}) \\ &= \|a^2 + \lambda^2 1\| \\ &\leq \|a^2\| + \lambda^2. \end{split}$$

Thus we must have $\alpha^2 + \beta^2 + 2\beta\lambda \le \|\alpha\|^2$, and for this to hold for each λ requires $\beta = 0$.

1.5 Preview for Next Class: The Gelfand Representation and Functional Calculus

We write two versions of the *Stone-Weierstraß theorem*, which are stated differently than they usually appear in the literature. For examples of such generalized versions of Stone-Weierstraß, see page 121 in ([Rud91]) and page 43 in ([Dou91]).

- **1.7 Theorem.** (i) Let X be compact and $A \subset C(X)$ a closed *-subalgebra that separates points. Then A = C(X), or there is $x_0 \in X$ such that $A = \{f \in C(X) : f(x_0) = 0\}$.
 - (ii) Let X be locally compact, $A \subset C_0(X)$ a closed *-subalgebra that separates points and has no common root. Then A is dense in $C_0(X)$.

References

- [1] Ronald G. Douglas. *Banach Algebra Techniques in Operator Theory*. Vol. 179. Graduate Texts in Mathematics. Springer, 1991. ISBN: 0387983775.
- [2] Walter Rudin. Functional Analysis. 2nd ed. International Series in Pure and Applied Mathematics. McGraw-Hill, 1991. ISBN: 0070542368.