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Last time

• Index group for C(X)

• Spectrum and Gelfand map for C(T) vs disc algebra

• Commutative C∗-algebras and spectral theory

1.5 Theorem. Let A be a commutative C∗-algebra then G : A → C(ΓA) is a C∗-isomorphism.
In particular, ∥x̂∥∞ = ∥x∥ and (x̂)∗ = x̂∗.

Proof. If a ∈ A is Hermitian, then ∥â∥∞ = r(a) = ∥a∥(since the spectral is real) by a being
normal and properties of the Gelfand map. From the preceeding lemma, â(ΓA) ⊂ σ(a) and we
see that â is real valued. We conclude for x = b+ ic with b, c Hermitian,

(x̂) = b̂− ic

= b̂− iĉ

= (b̂+ iĉ)∗

= x̂∗

This shows that the Gelfand transform is an isometric inventive homomorphism because

∥x̂∥2∞ = ∥x̂ ∗ x̂∥∞
= ∥x̂ ∗ x∥∞ (Hermitian)

= ∥x ∗ x∥∞
= ∥x∥2

It remains to show that G is onto. From G being an isomerty G(A) ⊂ C(ΓA) is a complete
subalgebra invariant under conjugation(REASON: any cauchy sequence in G(A) is also a cauchy
sequence in C(ΓA) which is complete.Hence the sequence converges in C(ΓA) But G being an
isomerty, the limit is in G(A)).

By ΓA ∈ A ′, G(A) separates points. To see this let χ ̸= χ ′ be two distinct points in ΓA.
Then there must exist a ∈ A such that χ(a) ̸= χ ′(a). Finally, since 0 ̸∈ ΓA, there is no common
root for G(A). Now using the Stone-Weierstrass theorem gives us that G(A) = C(ΓA)
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We can also use Gelfand’s representation to study commutative C∗-subalgebras of C∗-algebras.

1.6 Theorem. Let a be a normal element of a C∗-algebra with unit and C∗(a) the ∗-algebra
generated by 1 and a. Then

C∗(a) ∼= C(σ(a))

where the isomorphism maps a to idσ(a).

Proof. From C∗(a) = span{an(am)∗ : n,m ≥ 0}, it follows from continuity of multiplocation
and a∗a = aa∗ that C∗(a) is commutative. By Gelfand’s representation theorem C∗(a) ∼=
C(ΓC∗(a)).

We have 1̂(x) = 1 and
â : ΓC∗(a) → σC∗(a)(a)

â(χ) = χ(a)

We show that â is a homeomorphism(for which we show that continuous maps has continuous
inverse).
Since C(ΓC∗(a)) separates points of ΓC∗(a)) and the C∗-algebra is generated by 1 and a, â must al-

ready separate points(REASON:if not then a,a∗,an(am)∗ and hence span{an(am)∗ : n,m ≥ 0}

will not separate points which is not true because C∗(a) does so). Thus â is 1-1.
Now using that ΓC∗(a), is compact , â being continuous sends ΓC∗(a) to a compact set, hence any
closed subset of ΓC∗(a) is mapped to closed set. Since complements are preserved hence any open
subset of ΓC∗(a) is mapped to open set. So we get that â has continuous inverse.
It remains to show that σ(a) = σC∗(a)(a). By the inclusion of C∗-algebras,

σ(a) ⊂ σC∗(a)(a)

To see the reverse inclusion, we assume λ ∈ σC∗(a)(a) \ σ(a) then there is

b = (a− λ1)−1 ∈ A

Let m > ∥b∥ and choose f ∈ C(σC∗(a)(a)) with f(λ) = m and |f(z)(z − λ)| ≤ 1 for all
z ∈ σC∗(a)(a). To find such a function, we specialize to ran(f) ⊂ [0,m] and let f|B1/m(λ) = 0

Now using the inverse of Gelfand’s map, which is given by

G−1 : C(σC∗(a)(a)) → A

then we get with with g(z) = f(z)(z− λ).

m = ∥f∥∞
= ∥G−1(f)∥
= ∥G−1(f)(a− λ1)b∥
= ∥G−1(g)b∥
≤ ∥G−1(g)∥∥b∥
= ∥g∥∞∥b∥
≤ ∥b∥

contradicting our choice of m. Hence such a λ does not exist.
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1.7 Corollary. Let A be a C∗-algebra with unit, B be another C∗-algebra with unit and a ∈ B
be normal then

σB(a) = σA(a)

.

Proof. By inclusion of C∗-algebras,

σA(a) ⊂ σB(a) ⊂ σC∗(a)(a)

and combined with σA(a) = σC∗(a)(a) from the proof of previous theorem , we get that the
equality σB(a) = σA(a) holds.
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