Lecture Notes from January 26, 2023

taken by Dipanwita Bose

Last time

- Index group for C(X)
- Spectrum and Gelfand map for $C(\mathbb{T})$ vs disc algebra
- Commutative C*-algebras and spectral theory

1.5 Theorem. Let \mathcal{A} be a commutative C^* -algebra then $\mathcal{G} : \mathcal{A} \to C(\Gamma_{\mathcal{A}})$ is a C^* -isomorphism. In particular, $\|\hat{x}\|_{\infty} = \|x\|$ and $(\hat{x})^* = \hat{x^*}$.

Proof. If $a \in A$ is Hermitian, then $\|\hat{a}\|_{\infty} = r(a) = \|a\|$ (since the spectral is real) by a being normal and properties of the Gelfand map. From the preceeding lemma, $\hat{a}(\Gamma_A) \subset \sigma(a)$ and we see that \hat{a} is real valued. We conclude for x = b + ic with b, c Hermitian,

$$\widehat{(\hat{\mathbf{x}})} = \widehat{\mathbf{b} - \mathbf{i}\mathbf{c}}$$
$$= \widehat{\mathbf{b}} - \mathbf{i}\widehat{\mathbf{c}}$$
$$= (\widehat{\mathbf{b}} + \mathbf{i}\widehat{\mathbf{c}})$$
$$= \widehat{\mathbf{x}}^*$$

This shows that the Gelfand transform is an isometric inventive homomorphism because

$$\begin{split} \|\hat{\mathbf{x}}\|_{\infty}^{2} &= \|\hat{\mathbf{x}} * \hat{\mathbf{x}}\|_{\infty} \\ &= \|\widehat{\mathbf{x}} * \hat{\mathbf{x}}\|_{\infty} \text{ (Hermitian)} \\ &= \|\mathbf{x} * \mathbf{x}\|_{\infty} \\ &= \|\mathbf{x}\|^{2} \end{split}$$

It remains to show that \mathcal{G} is onto. From \mathcal{G} being an isomerty $\mathcal{G}(\mathcal{A}) \subset C(\Gamma_{\mathcal{A}})$ is a complete subalgebra invariant under conjugation(REASON: any cauchy sequence in $\mathcal{G}(\mathcal{A})$ is also a cauchy sequence in $C(\Gamma_{\mathcal{A}})$ which is complete.Hence the sequence converges in $C(\Gamma_{\mathcal{A}})$ But \mathcal{G} being an isomerty, the limit is in $\mathcal{G}(\mathcal{A})$).

By $\Gamma_{\mathcal{A}} \in \mathcal{A}'$, $\mathcal{G}(\mathcal{A})$ separates points. To see this let $\chi \neq \chi'$ be two distinct points in $\Gamma_{\mathcal{A}}$. Then there must exist $a \in \mathcal{A}$ such that $\chi(a) \neq \chi'(a)$. Finally, since $0 \notin \Gamma_{\mathcal{A}}$, there is no common root for $\mathcal{G}(\mathcal{A})$. Now using the Stone-Weierstrass theorem gives us that $\mathcal{G}(\mathcal{A}) = C(\Gamma_{\mathcal{A}})$ We can also use Gelfand's representation to study commutative C^* -subalgebras of C^* -algebras.

1.6 Theorem. Let α be a normal element of a C^{*}-algebra with unit and C^{*}(α) the *-algebra generated by 1 and α . Then

$$C^*(\mathfrak{a}) \cong C(\sigma(\mathfrak{a}))$$

where the isomorphism maps a to $id_{\sigma(a)}$.

Proof. From $C^*(a) = \overline{span}\{a^n(a^m)^* : n, m \ge 0\}$, it follows from continuity of multiplocation and $a^*a = aa^*$ that $C^*(a)$ is commutative. By Gelfand's representation theorem $C^*(a) \cong C(\Gamma_{C^*(a)})$.

We have $\hat{1}(x) = 1$ and

$$egin{aligned} \widehat{\mathfrak{a}} : \Gamma_{\mathrm{C}^*(\mathfrak{a})} & o \sigma_{\mathrm{C}^*(\mathfrak{a})}(\mathfrak{a}) \ \widehat{\mathfrak{a}}(\chi) &= \chi(\mathfrak{a}) \end{aligned}$$

We show that $\hat{\alpha}$ is a homeomorphism(for which we show that continuous maps has continuous inverse).

Since $C(\Gamma_{C^*(a)})$ separates points of $\Gamma_{C^*(a)})$ and the C*-algebra is generated by 1 and a, \hat{a} must already separate points(REASON: if not then $a, a^*, a^n(a^m)^*$ and hence $\overline{span}\{a^n(a^m)^* : n, m \ge 0\}$ will not separate points which is not true because $C^*(a)$ does so). Thus \hat{a} is 1-1.

Now using that $\Gamma_{C^*(\alpha)}$, is compact, $\hat{\alpha}$ being continuous sends $\Gamma_{C^*(\alpha)}$ to a compact set, hence any closed subset of $\Gamma_{C^*(\alpha)}$ is mapped to closed set. Since complements are preserved hence any open subset of $\Gamma_{C^*(\alpha)}$ is mapped to open set. So we get that $\hat{\alpha}$ has continuous inverse.

It remains to show that $\sigma(a) = \sigma_{C^*(a)}(a)$. By the inclusion of C^{*}-algebras,

$$\sigma(\mathfrak{a}) \subset \sigma_{\mathrm{C}^*(\mathfrak{a})}(\mathfrak{a})$$

To see the reverse inclusion, we assume $\lambda \in \sigma_{C^*(\mathfrak{a})}(\mathfrak{a}) \setminus \sigma(\mathfrak{a})$ then there is

$$\mathbf{b} = (\mathbf{a} - \lambda \mathbf{1})^{-1} \in \mathcal{A}$$

Let $m > \|b\|$ and choose $f \in C(\sigma_{C^*(a)}(a))$ with $f(\lambda) = m$ and $|f(z)(z - \lambda)| \le 1$ for all $z \in \sigma_{C^*(a)}(a)$. To find such a function, we specialize to $ran(f) \subset [0, m]$ and let $f|_{B_{1/m}(\lambda)} = 0$ Now using the inverse of Gelfand's map, which is given by

$$\mathcal{G}^{-1}: \mathrm{C}(\sigma_{\mathrm{C}^*(\mathfrak{a})}(\mathfrak{a})) \to A$$

then we get with with $g(z) = f(z)(z - \lambda)$.

$$\begin{split} m &= \|f\|_{\infty} \\ &= \|\mathcal{G}^{-1}(f)\| \\ &= \|\mathcal{G}^{-1}(f)(a - \lambda 1)b\| \\ &= \|\mathcal{G}^{-1}(g)b\| \\ &\leq \|\mathcal{G}^{-1}(g)\|\|b\| \\ &= \|g\|_{\infty}\|b\| \\ &\leq \|b\| \end{split}$$

contradicting our choice of m. Hence such a λ does not exist.

1.7 Corollary. Let A be a C^* -algebra with unit, B be another C^* -algebra with unit and $\alpha \in B$ be normal then

$$\sigma_{\mathcal{B}}(\mathfrak{a}) = \sigma_{\mathcal{A}}(\mathfrak{a})$$

Proof. By inclusion of C*-algebras,

.

$$\sigma_{\mathcal{A}}(\mathfrak{a})\subset\sigma_{\mathcal{B}}(\mathfrak{a})\subset\sigma_{\mathrm{C}^*(\mathfrak{a})}(\mathfrak{a})$$

and combined with $\sigma_{\mathcal{A}}(a) = \sigma_{\mathrm{C}^*(a)}(a)$ from the proof of previous theorem , we get that the equality $\sigma_{\mathcal{B}}(a) = \sigma_{\mathcal{A}}(a)$ holds.