
MATH 7321 Lecture Notes

Note-taker: Kumari Teena

January 31, 2023

Last Time:

• Gelfand Representation for Commutative C∗-Algebras.

• Properties of Spectrum.

1 Functional Calculus for Operators

Corollary 1. If H is a (complex) Hilbert space and A ∈ B(H) be nor-

mal. Then there is an isometric embedding Φ : C(σ(A)) −→ B(H), with

Φ(idσ(A)) = A.

Proof. This follows from choosing Φ = G−1 in the preceding theorem applied

to the C∗-algebra generated by 1 and A.

Remark 2. This allows us to assign an operator Φ(f) ≡ f(A) to each con-

tinuous function f and by isomorphism property, for f, g ∈ C(σ(A))

f(A)g(A) = (fg)(A) ,

as well as (f(A))∗ = f(A).

Moreover, σ(f(A)) = f(σ(A)), because

σ(f(A)) = σ(Φ(f)) ,

iso
≈ σC(σ(A))(f) ,

= f(σ(A)).
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Note: Here f(σ(A)) = f(σ(A)) as f is continuous and σ(A) is compact.

Warm up: Find a C∗-algebra A and a ∈ A such that σA(a) = [0, 1] .

Example 3. A = C([0, 1]) and a ∈ A is defined by a(x) = x.

• Can we find A ⊆ B(H)?

2 Limitations of Functional Calculus

To see what limitations the functional calculus has, we consider an example:

Example 4. Summability Properties: Let Hilbert space H has orthonor-

mal basis (ej)j∈J and let x : J −→ C, j −→ xj be bounded. We claim

Av =
∑
j∈J

xj⟨v, ej⟩ej,

defines a normal operator and σ(A) = x(J). We note that, the series con-

verges by summability properties of orthonormal basis and ∥A∥ = ∥x∥∞. By

A∗v =
∑
j∈J

xj⟨v, ej⟩ej ,

we see that, A is normal. From orthonormal property Aej = xjej, gives

eigen-values/vectors. Hence, x(J) ⊆ σ(A).

Conversely, if λ /∈ x(J), then

(A− λ1)v =
∑
j∈J

(xj − λ)⟨v, ej⟩ej,

and hence,

(A− λ1)−1 =
∑
j∈J

(xj − λ)−1⟨v, ej⟩ej,

defines a bounded operator (A − λ1)−1. This implies that, λ /∈ σA. So,

σ(A) = x(J). Moreover, we can prove that if f ∈ C(σ(A)), then

f(A)v =
∑
j∈J

f(xj)⟨v, ej⟩ej .
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This can be shown first for polynomials and then by taking limits in C(σ(A)).

We can define a functional calculus beyond the range of Gelfand’s represen-

tation theorem in this case.

If E ⊂ C is closed, then we define

PEv =
∑
xj∈E

⟨v, ej⟩ej

as the spectral projection associated with E. We see that

P 2
Ev = PE

(∑
xi∈E

⟨v, ei⟩ei

)
=
∑
xj∈E

⟨
∑
xi∈E

⟨v, ei⟩ei, ej⟩ej

=
∑
xj∈E

(∑
xi∈E

⟨v, ei⟩⟨ei, ej⟩

)
ej

=
∑
xj∈E

⟨v, ej⟩ej , (because (ej)j∈J is orthonormal)

= PE

Thus P 2
E = PE. This defines an orthogonal projection. Also, we see that PE

commutes with A, which proved as follows:

(PEA)v = PE(Av)

= PE

(∑
j∈J

xj⟨v, ej⟩ej

)

=
∑
xi∈E

〈∑
j∈J

xj⟨v, ej⟩ej, ei

〉
ei

=
∑
xi∈E

∑
j∈J

xj⟨v, ej⟩⟨ej, ei⟩ei

=
∑
xi∈E

xi⟨v, ei⟩ei .
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and

(APE)v = A(PEv)

= A

∑
xj∈E

⟨v, ej⟩ej


=
∑
i∈J

xi

〈∑
xj∈E

⟨v, ej⟩ej, ei

〉
ei

=
∑
xj∈E

∑
i∈J

xi⟨v, ej⟩⟨ej, ei⟩ei

=
∑
xj∈E

xj⟨v, ej⟩ej .

Thus, (PEA)v = (APE)v. Also, we have

σ(A|PE(H)) = E ∩ x(J) ⊂ E .

Hence, this operator A|PE(H) is the ”the piece” of A for which the spectrum

is in E. It would be nice to have PE = f(A) for some f ∈ C(σ(A)). Then

we would have

f(x) =

1, xj ∈ E

0, xj /∈ E .

So, f is {0, 1}- valued. Thus, σ(A) = f−1({0})∪f−1({1}) splits σ(A) in two

closed and open subsets. If σ(A)∩E is not closed and open then, we can not

find such a function f in C(σ(A)).

Example: Take J = N, and xj to denumerate Q ∩ [0, 1]. Then we can

not find PE other than PE = O or PE = I corresponding to f ∈ C([0, 1]).

Because, if PE ̸= O then there is 0 ̸= y ∈ E such that PEv = y for some

v ∈ H. This implies that∑
xj∈E

⟨v, ej⟩ej = y

∑
xj∈E

⟨v, ej⟩⟨ej, ei⟩ = ⟨y, ei⟩, i ∈ J

⟨v, ei⟩ = ⟨y, ei⟩, i ∈ J, as (ej)j∈J is orthonormal,

=⇒ y = v.

So, PEv = v for all v , and this implies PE = I.

Thus, PE = O or PE = I.
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