MATH 7321 Lecture Notes

Note-taker: Kumari Teena

January 31, 2023

Last Time:

- Gelfand Representation for Commutative C^* -Algebras.
- Properties of Spectrum.

1 Functional Calculus for Operators

Corollary 1. If \mathcal{H} is a (complex) Hilbert space and $A \in \mathcal{B}(\mathcal{H})$ be normal. Then there is an isometric embedding $\Phi : C(\sigma(A)) \longrightarrow \mathcal{B}(\mathcal{H})$, with $\Phi(id_{\sigma(A)}) = A$.

Proof. This follows from choosing $\Phi = \mathcal{G}^{-1}$ in the preceding theorem applied to the C^* -algebra generated by 1 and A.

Remark 2. This allows us to assign an operator $\Phi(f) \equiv f(A)$ to each continuous function f and by isomorphism property, for $f, g \in C(\sigma(A))$

$$f(A)g(A) = (fg)(A) ,$$

as well as $(f(A))^* = \overline{f}(A)$. Moreover, $\sigma(f(A)) = f(\sigma(A))$, because

$$\sigma(f(A)) = \sigma(\Phi(f)) ,$$

$$\stackrel{iso}{\approx} \sigma_{C(\sigma(A))}(f) ,$$

$$= f(\sigma(A)).$$

Note: Here $\overline{f(\sigma(A))} = f(\sigma(A))$ as f is continuous and $\sigma(A)$ is compact.

Warm up: Find a C^* -algebra \mathcal{A} and $a \in \mathcal{A}$ such that $\sigma_{\mathcal{A}}(a) = [0, 1]$.

Example 3. $\mathcal{A} = C([0, 1])$ and $a \in \mathcal{A}$ is defined by a(x) = x.

• Can we find $\mathcal{A} \subseteq \mathcal{B}(\mathcal{H})$?

2 Limitations of Functional Calculus

To see what limitations the functional calculus has, we consider an example:

Example 4. Summability Properties: Let Hilbert space \mathcal{H} has orthonormal basis $(e_j)_{j \in J}$ and let $x : J \longrightarrow \mathbb{C}, \ j \longrightarrow x_j$ be bounded. We claim

$$Av = \sum_{j \in J} x_j \langle v, e_j \rangle e_j,$$

defines a normal operator and $\sigma(A) = \overline{x(J)}$. We note that, the series converges by summability properties of orthonormal basis and $||A|| = ||x||_{\infty}$. By

$$A^*v = \sum_{j \in J} \overline{x}_j \langle v, e_j \rangle e_j \; ,$$

we see that, A is normal. From orthonormal property $Ae_j = x_je_j$, gives eigen-values/vectors. Hence, $\overline{x(J)} \subseteq \sigma(A)$. Conversely, if $\lambda \notin \overline{x(J)}$, then

$$(A - \lambda 1)v = \sum_{j \in J} (x_j - \lambda) \langle v, e_j \rangle e_j,$$

and hence,

$$(A - \lambda 1)^{-1} = \sum_{j \in J} (x_j - \lambda)^{-1} \langle v, e_j \rangle e_j,$$

defines a bounded operator $(A - \lambda 1)^{-1}$. This implies that, $\lambda \notin \sigma A$. So, $\sigma(A) = \overline{x(J)}$. Moreover, we can prove that if $f \in C(\sigma(A))$, then

$$f(A)v = \sum_{j \in J} f(x_j) \langle v, e_j \rangle e_j .$$

This can be shown first for polynomials and then by taking limits in $C(\sigma(A))$. We can define a functional calculus beyond the range of Gelfand's representation theorem in this case.

If $E \subset C$ is closed, then we define

$$P_E v = \sum_{x_j \in E} \langle v, e_j \rangle e_j$$

as the spectral projection associated with E. We see that

$$\begin{split} P_E^2 v &= P_E \left(\sum_{x_i \in E} \langle v, e_i \rangle e_i \right) \\ &= \sum_{x_j \in E} \langle \sum_{x_i \in E} \langle v, e_i \rangle e_i, e_j \rangle e_j \\ &= \sum_{x_j \in E} \left(\sum_{x_i \in E} \langle v, e_i \rangle \langle e_i, e_j \rangle \right) e_j \\ &= \sum_{x_j \in E} \langle v, e_j \rangle e_j , \qquad (because \ (e_j)_{j \in J} \ is \ orthonormal) \\ &= P_E \end{split}$$

Thus $P_E^2 = P_E$. This defines an orthogonal projection. Also, we see that P_E commutes with A, which proved as follows:

$$(P_E A)v = P_E(Av)$$

= $P_E\left(\sum_{j\in J} x_j \langle v, e_j \rangle e_j\right)$
= $\sum_{x_i\in E} \left\langle \sum_{j\in J} x_j \langle v, e_j \rangle e_j, e_i \right\rangle e_i$
= $\sum_{x_i\in E} \sum_{j\in J} x_j \langle v, e_j \rangle \langle e_j, e_i \rangle e_i$
= $\sum_{x_i\in E} x_i \langle v, e_i \rangle e_i$.

and

$$(AP_E)v = A(P_Ev)$$

= $A\left(\sum_{x_j \in E} \langle v, e_j \rangle e_j\right)$
= $\sum_{i \in J} x_i \left\langle \sum_{x_j \in E} \langle v, e_j \rangle e_j, e_i \right\rangle e_i$
= $\sum_{x_j \in E} \sum_{i \in J} x_i \langle v, e_j \rangle \langle e_j, e_i \rangle e_i$
= $\sum_{x_j \in E} x_j \langle v, e_j \rangle e_j$.

Thus, $(P_E A)v = (AP_E)v$. Also, we have

$$\sigma(A|_{P_E(\mathcal{H}))} = \overline{E \cap x(J)} \subset E \; .$$

Hence, this operator $A|_{P_E(\mathcal{H})}$ is the "the piece" of A for which the spectrum is in E. It would be nice to have $P_E = f(A)$ for some $f \in C(\sigma(A))$. Then we would have

$$f(x) = \begin{cases} 1, & x_j \in E \\ 0, & x_j \notin E \end{cases}$$

So, f is $\{0,1\}$ - valued. Thus, $\sigma(A) = f^{-1}(\{0\}) \cup f^{-1}(\{1\})$ splits $\sigma(A)$ in two closed and open subsets. If $\sigma(A) \cap E$ is not closed and open then, we can not find such a function f in $C(\sigma(A))$.

Example: Take $J = \mathbb{N}$, and x_j to denumerate $\mathbb{Q} \cap [0, 1]$. Then we can not find P_E other than $P_E = O$ or $P_E = I$ corresponding to $f \in C([0, 1])$. Because, if $P_E \neq O$ then there is $0 \neq y \in E$ such that $P_E v = y$ for some $v \in \mathcal{H}$. This implies that

$$\sum_{\substack{x_j \in E}} \langle v, e_j \rangle e_j = y$$
$$\sum_{\substack{x_j \in E}} \langle v, e_j \rangle \langle e_j, e_i \rangle = \langle y, e_i \rangle, \quad i \in J$$
$$\langle v, e_i \rangle = \langle y, e_i \rangle, \quad i \in J, \quad as \ (e_j)_{j \in J} \ is \ orthonormal,$$
$$\implies y = v.$$

So, $P_E v = v$ for all v, and this implies $P_E = I$. Thus, $P_E = O$ or $P_E = I$.