Lecture Notes from February 02, 2023

taken by Tanvi Telang

Last time

• Functional calculus and its limitations

Warm up/Recap: Topologies on $\mathbb{B}(\mathcal{H})$ Definitions:

- Norm topology: Topology induced by the supremum norm on $\mathbb{B}(\mathcal{H})$.
- Strong operator topology, denoted SOT: coarsest topology such that $\forall v \in \mathcal{H}$, the map $T_{v} : \mathbb{B}(\mathcal{H}) \to \mathbb{B}(\mathcal{H}); A \mapsto Av$ is continuous.
- Weak operator topology, denoted WOT: coarsest topology such that $\forall v, w \in \mathcal{H}$, $\lambda_{v,w}(A) = \langle Av, w \rangle$ is continuous.

Characterization using sequences: (Let $A \subset \mathbb{B}(\mathcal{H})$)

- Norm topology: $X \in \overline{A} \iff$ there exist $\{x_n\}$ sequence in A such that $x_n \to x$
- Strong operator topology: We know $X \in \overline{A}^{SOT} \iff$ for any strongly open set U and $X \in U$, we have $U \cap X \neq \phi$. Using basis of topology, for each open U and $X \in U$ we can find a finite set of vectors $\{v_1, v_2, \cdots, v_n\}$ in \mathcal{H} and $\epsilon > 0$,

$$V := \{Y \in \mathbb{B}(\mathcal{H}) : \|(Y - X)v_j\| < \varepsilon, \forall j \in \{1, 2, \cdots, m\}\}$$

with $X \in V$ and $V \subset U$. Hence,

 $\begin{array}{l} X\in\bar{A}^{SOT}\iff \forall\{\nu_1,\nu_2,\cdots,\nu_n\}\subset\mathcal{H}, \varepsilon>0, \textit{ we can find }Y\in X\textit{ such that }\|(Y-X)\nu_j\|<\varepsilon>0 \textit{ for all }j\in\{1,2,\cdots,m\}. \end{array}$

Weak operator topology, denoted WOT: X ∈ Ā^{WOT} ⇔ there exists X_n sequence in A such that ∀v, w ∈ H, ⟨X_nv, w⟩ → ⟨Av, w⟩ in C.

We return to functional calculus and hope to use weaker topologies to get more functions of operators.

1.47 Definition. Let \mathcal{H} be a Hilbert space, $E \subset \mathbb{B}(\mathcal{H})$, then we define the commutant of E

$$E' := \{A \in \mathbb{B}(\mathcal{H}) : AB = BA, \forall B \in E\}$$

We now have a lemma on the properties of the commutant, (which are strikingly similar to properties of a closed space and its perp).

1.48 Lemma. For sets $E, F \subset \mathbb{B}(\mathcal{H})$, we have

- $1. \ E \subset F' \iff F \subset E'$
- *2.* E ⊂ E"
- 3. $E \subset F \implies F' \subset E'$
- 4. E' = E"'
- 5. $E = E^{"} \iff$ there is $F \subset \mathbb{B}(\mathcal{H})$ such that E = F'
- *Proof.* 1. If $E \subset F'$ then for $A \in E$, $B \in F AB = BA$ and thus by symmetry $F \subset E'$. Swapping E and F gives the converse.
 - 2. If in part 1. we choose F = E' then $F \subset E'$, i.e., $E' \subset E'$ implies $E \subset F'$, i.e., $E \subset E''$
 - 3. If $E \subset F$ let $A \in F'$ then AB = BA for all $B \in F$ and for all $C \in E AC = CA$ since $C \in E \subset F$ hence $A \in E'$ and we have $F' \subset E'$
 - 4. From part 2. $E' \subset (E')$ " and combinig parts 2. and 3. we get $E \subset E$ " $\implies E$ "' $\subset E'$. Hence E' = E"'.
 - 5. If E = F' then by part 4. $F' = F'' \implies E = E''$. Conversely, if E = E'' = (E')', then setting F = E' gives E = E'' = (E')' = F'.
- **1.49 Lemma.** Let $E \subset \mathbb{B}(\mathcal{H})$, then
 - 1. E' is a closed subalgebra of $\mathbb{B}(\mathcal{H})$.
 - 2. If E is commutative, then so is E".
 - 3. If E is invariant under taking adjoints, then so is E'.
- *Proof.* 1. $\forall A \in E, \{A\}' = \{B \in B(H) = AB = BA\}$ a is closed by continuity of multiplication, so $E' = \bigcap_{A \in E} \{A\}'$ is closed. E is a subalgebra since if $C, D \in E$ ", then AC = CA and $AB = BA \ \forall A \in E$
 - for any scalar k A(kB) = k(AB) = kBA hence $kB \in E$.
 - A(B+C) = AB + AC = BA + BC = (B+C)A hence $B + C \in E$.
 - A(BC) = BAC = BCA = (BC)A hence $BC \in E$.
 - 2. If E is commutative, then $E \subset E'$; and by the properties $E'' \subset E'$, so by reversing and taking commutant using properties, $E'' \subset E'''$. This implies E'' is commutative.
 - This follows from taking adjoint of products as follows. We have A ∈ E ⇐⇒ A* ∈ E. If B ∈ E', AB = BA for all A ∈ E and taking adjoints B*A* = A*B* for all A* ∈ E. Since E is invariant under adjoints we have B ∈ E' giving us the result.